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ABSTRACT

Linear stochastically forced models have been found to be competitive with comprehensive nonlinear

weather and climate models at representing many features of the observed covariance statistics and at pre-

dictions beyond a week. Their success seems at odds with the fact that the observed statistics can be significantly

non-Gaussian, which is often attributed to nonlinear dynamics. The stochastic noise in the linear models can be

a mixture of state-independent (‘‘additive’’) and linearly state-dependent (‘‘multiplicative’’) Gaussian white

noises. It is shown here that such mixtures can produce not only symmetric but also skewed non-Gaussian

probability distributions if the additive and multiplicative noises are correlated. Such correlations are readily

anticipated from first principles. A generic stochastically generated skewed (SGS) distribution can be analyt-

ically derived from the Fokker–Planck equation for a single-component system. In addition to skew, all such

SGS distributions have power-law tails, as well as a striking property that the (excess) kurtosis K is always

greater than 1.5 times the square of the skew S. Remarkably, this K–S inequality is found to be satisfied by

circulation variables even in the observed multicomponent climate system. A principle of ‘‘diagonal domi-

nance’’ in the multicomponent moment equations is introduced to understand this behavior.

To clarify the nature of the stochastic noises (turbulent adiabatic versus diabatic fluctuations) responsible for

the observed non-Gaussian statistics, a long 1200-winter simulation of the northern winter climate is generated

using a dry adiabatic atmospheric general circulation model forced only with the observed long-term winter-

mean diabatic forcing as a constant forcing. Despite the complete neglect of diabatic variations, the model

reproduces the observed K–S relationships and also the spatial patterns of the skew and kurtosis of the daily

tropospheric circulation anomalies. This suggests that the stochastic generators of these higher moments are

mostly associated with local adiabatic turbulent fluxes. The model also simulates fifth moments that are ap-

proximately 10 times the skew, and probability densities with power-law tails, as predicted by the linear theory.

1. Introduction

Although the governing equations for weather and

climate evolution are obviously nonlinear, in many con-

texts the evolution of anomalies (departures from a

background state) is well approximated by linear equa-

tions of the form

dx

dt
5 Ax 1 fext 1 Bh 2 D, (1)

where x(t) is an N-component anomaly state vector, fext(t)

is an N-component external forcing vector, h is an M-

component noise vector of independent Gaussian white

noises with zero mean, A(t) and B(t) are N 3 N and N 3

M matrices, and D(t) 5 hBhi is an N-component ex-

pected mean noise forcing vector (which we retain for

future reference even though it is strictly zero here).

The equations for all classical free and forced linear

wave dynamics in the climate system may be cast in

this form, as may also those for the evolution of small-

amplitude forecast errors, important in modern data as-

similation techniques. The traditional use of linear models

in such contexts has advanced both basic understanding

and practical applications, but has stopped short of claim-

ing that observed full-amplitude anomalies also obey such

equations. Evidence has steadily accumulated, however,

to support even this latter stronger claim, especially for

‘‘coarse-grained’’ anomalies averaged over various time

and space scales. This evidence has come from a wide

range of studies demonstrating the approximate line-

arity of the global climate response to combinations of
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radiative forcings (e.g., Knutson et al. 2006 and references

therein), the approximate linearity of the global atmo-

spheric response to tropical SST changes (e.g., Barsugli

and Sardeshmukh 2002; Schneider et al. 2003; Barsugli

et al. 2006), the approximately linear dynamics of sea-

sonal tropical SST anomalies (Penland and Sardeshmukh

1995), the competitiveness of simple linear seasonal fore-

cast models with global coupled climate models (Saha

et al. 2006), the approximately linear evolution of weekly-

averaged atmospheric circulation anomalies (Winkler

et al. 2001; Newman and Sardeshmukh 2008), and the

competitiveness of week-2 and week-3 linear forecast

models with comprehensive numerical weather pre-

diction (NWP) models (Winkler et al. 2001; Newman

et al. 2003). Even on the time scales of daily weather,

linear stochastically forced (LSF) models of the form

(1), although not as accurate as NWP models for daily

predictions, are realistic enough to capture many fea-

tures of the second-order statistics of observed syn-

optic variability, such as the geographical structures of

eddy variances and covariances and momentum and

heat fluxes (e.g., Farrell and Ioannou 1995; Hall and

Sardeshmukh 1998; Whitaker and Sardeshmukh 1998;

DelSole 2004).

In light of these and many other studies, the relevance

of LSF dynamics even in the chaotic nonlinear climate

system seems undeniable. Indeed, without it the pleth-

ora of diagnostic studies of weather and climate varia-

tions (and of weather and climate model errors) based

on linear regressions and correlations would have lim-

ited value. The basic premise in (1) concerning the dy-

namics of coarse-grained anomalies is that the coarse-

grained nonlinear tendency terms, associated primarily

with fluxes by unresolved eddies, can in principle be

linearly parameterized in terms of the coarse-grained

anomalies, and the unparameterized remainder can be

treated as stochastic white noise. It is important to

recognize that the matrix A in (1) is therefore in general

not that obtained by directly linearizing the governing

equations but also includes such linear flux parameter-

izations, and the matrix B accounts for the amplitude

and correlation structure of the unparameterized re-

mainder as a ‘‘stochastic parameterization.’’ Procedures

for estimating these matrices directly from data, as well

as for testing the validity of (1), are called linear inverse

modeling (Penland 1989) and are discussed in detail in

Penland and Ghil (1993), Penland and Matrosova (1994),

Penland and Sardeshmukh (1995), and Winkler et al.

(2001).

An attractive feature of the LSF approximation (1) is

that the moment equations for the evolving probability

density functions (PDFs) are closed; that is, equations

for the higher-order moments involve moments of the

same or lower order. Specifically, the equations for the

first moment hxi(t) and the second moment C(t)5 hxxTi
are

d

dt
hxi5 Ahxi1 fext,

d

dt
C 5 AC 1 CAT

1 Q 1 hxifT
ext 1 fexthxTi, (2)

where Q 5 BBT and angle brackets h i denote expected

values. The centered second moment C9 5 hx9x9Ti of

the departures x95 x2 hxi is related to C as C9 5C 2

hxihxTi. Note that these linear equations for hxi and C

are applicable to the moments of the marginal (i.e.,

unconditional) PDF p(x) as well as to the conditional

PDF p[x(t)|x(0)] of x(t) given x(0), that is, to the mo-

ments of the observed as well as forecast probability

distributions. They can therefore be used to model and

predict those PDFs without explicitly having to gener-

ate ensembles of integrations as in traditional ensemble

forecasting techniques using GCMs. In the simplest

scenario in which A, B, and fext are constant, the sta-

tionary solutions to (2) may be written as

hxi5 2A21fext,

dC

dt
5 0 5 AC 1 CAT

1 Q 1 hxifT
ext 1 fexthxTi

(3a)

for the marginal moments, and

x̂0(t) [ hx0(t)jx0(0)i5 eAtx0(0),

Ĉ(t) [ h(x̂02 x0)(x̂02 x0)Ti5 C02 eAtC0eATt (3b)

for the conditional (i.e., forecast) moments of the de-

partures x9 of x from the mean forced anomalous state

hxi in (3a). If x is Gaussian, then given that Gaussian

PDFs are characterized completely by their first and

second moments, these equations [and more generally,

Eqs. (2)] provide a complete description of system vari-

ability and predictability. This, together with the fact that

LSF models are also typically of vastly lower dimension

(N , 100, M , 100) than GCMs provides a strong in-

centive to determine what aspects of the real nonlinear

climate system can and cannot be captured by such

models.

LSF models (1) are consistent with Gaussian statistics.

The reasons for this are twofold. First, because of av-

eraging, the PDFs of the coarse-grained anomalies for

which (1) is appropriate are approximately Gaussian.

This is a direct consequence of the central limit theorem,

which dictates that the probability distribution of an av-

erage of a sufficiently large number (in practice, often

less than 30) of independent and identically distributed

but not necessarily Gaussian variables is approximately
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Gaussian. The statistics of monthly and longer averages

in the climate system are indeed approximately Gaussian

(Stephenson et al. 2004; Penland and Sardeshmukh 1995).

Second, because any linear combination of Gaussian

variables is also strictly a Gaussian variable, the dynamics

of such variables are consistent with LSF dynamics. Thus,

if x(t) in (1) is Gaussian, and fext(t) is either constant or

Gaussian, then dx/dt and therefore x(t 1 Dt) is Gaussian,

and a dynamical evolution consistent with Gaussian

statistics is attained. In a nonlinear system in which A

depends on x, dx/dt is not Gaussian even if x(t) is

Gaussian, and an evolution consistent with Gaussian

statistics is not guaranteed.

Gaussian statistics thus imply LSF dynamics. But do

non-Gaussian statistics necessarily imply nonlinear dy-

namics? In particular, does the existence of skewness,

demonstrating an asymmetry in the statistics of opposite-

signed anomalies, necessarily establish the nonlinearity

of the underlying dynamics? This is our primary concern

in this paper. The issue is not only of fundamental but

also practical interest. For example, even if LSF models

are competitive with nonlinear GCMs at representing

observed second-order statistics and second-order mea-

sures of forecast performance (such as rms errors and

anomaly correlations), one may still wonder if they can

remain so at representing the higher-order moments of

the marginal and forecast probability distributions. In

particular, one may wonder if they are capable of rep-

resenting the tails of the marginal and forecast distri-

butions and thus the likelihood of extreme weather and

climate events.

The issue would be moot if the PDFs of the observed

circulation were Gaussian. As mentioned above, the

PDFs of monthly and longer-term averages are almost

Gaussian, but the PDFs of the less coarse-grained weekly

averages are appreciably non-Gaussian (Sura et al. 2005

and references therein), and those of daily averages are

even more so. Figure 1 shows the skew S and (excess)

kurtosis K of the observed daily-averaged 300-mb vor-

ticity in the northern winters of 1970–99. Both quanti-

ties are large in the hemispheric jet stream waveguide

(Hoskins and Ambrizzi 1993; Borges and Sardeshmukh

1995; Branstator 2002) and have a coherent geographical

structure. [For reasons that will become clearer below,

detailed assessments of the statistical significance of such

higher moments are not a major concern of this paper.

We note in passing that similar patterns of K and S were

obtained using subsets of the data and also by White

(1980) using a different and smaller dataset.] Figure 2

displays the results of Fig. 1 in the form of a scatterplot.

A remarkable tendency toward a parabolic relationship

between K and S is evident. Similar remarks may also

be made concerning the non-Gaussian character of, for

instance, sea surface temperature (SST) variability in the

eastern tropical Pacific: the PDFs are almost Gaussian for

3-month averages (Penland and Sardeshmukh 1995), ap-

preciably non-Gaussian for monthly averages (Hannachi

et al. 2003), and substantially non-Gaussian for daily

averages, with a similar remarkable tendency toward

a parabolic K–S relationship (Sura and Sardeshmukh

2008).

LSF models of the form (1) can generate non-Gaussian

statistics, but only if fext(t) is non-Gaussian. One may

expect some non-Gaussianity, for example, from slow

non-Gaussian variations of natural and anthropogenic

radiative forcings. Similarly, insofar as tropical SSTs

may be considered as ‘‘forcing’’ the extratropical cir-

culation, the PDFs of the extratropical circulation may

be influenced by the non-Gaussianity of the tropical

SSTs. Such mechanisms, however, do not solve the

FIG. 1. Observed skewness S and excess kurtosis K of daily 300-mb vorticity variations during the

northern winters of 1970–99, estimated using the NCEP–NCAR reanalysis dataset. The fields are both

colored and contoured for clarity. The contours are drawn at intervals of 0.4, starting at 0.2.
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problem of explaining the non-Gaussianity of x but

merely shift it to explaining the non-Gaussianity of fext.

Because our concern here is with the implications of

non-Gaussian statistics for the linearity or nonlinearity

of the internal system dynamics, we will henceforth ig-

nore such external generators of non-Gaussian varia-

bility and assume that fext is either constant or Gaussian.

Our goal in this paper is to show that non-Gaussian

statistics can be reconciled with LSF dynamics through

a relatively minor extension of (1): by allowing the

stochastic forcing amplitude matrix B to depend linearly

on the system state. Specifically, we consider the im-

plications of its elements Bim being of the form

Bim(x, t) 5 Gim(t) 1 �
j

Eijm(t)xj. (4a)

In the following, we will refer to the stochastic forcing

Bh as being purely ‘‘additive’’ if E is zero and purely

‘‘multiplicative’’ if G is zero. If Gim and Eijm are non-

zero, but not for the same noise component hm, we have

an uncorrelated mixture of additive and multiplicative

noises. If Gim and Eijm are both nonzero for some noise

components hm, we have correlated additive and mul-

tiplicative (CAM) noise. An important aspect of CAM

noise forcing is that its expected mean ‘‘noise-induced

drift’’ D is not zero in (1) but, as shown below in section

2, is related to the noise parameters as

Di(t) 5
1

2
�

j
�
m

Eijm(t)Gjm(t). (4b)

We will show how CAM noise occurs naturally in a qua-

dratically nonlinear dynamical system, such as the climate

system, through terms involving x and rapidly decorre-

lating system components that may be approximated as

noise.

We will see that additive plus uncorrelated multipli-

cative noise can produce symmetric non-Gaussian but

not asymmetric (i.e., skewed) PDFs. To generate asym-

metric PDFs, one must have CAM noise. We will also

see how this necessitates modifying the moment Eqs. (2)

because of the so-called noise-induced drift [of which

D(t) represents the expected mean], but the equations

remain linear and closed as before. However, because the

modified stochastic forcing can generate non-Gaussian

statistics, those moment equations no longer provide a

complete description of system variability and predict-

ability. We will seek some insight into the higher mo-

ments by investigating the simplest LSF system with

CAM noise, a 1D system (with N 5 1, M 5 2) of the

form

dx

dt
5 Ax 1 bh1 1 (Ex 1 g)h2 2

1

2
Eg, (5)

in which A, b, E, and g are all scalar constants, and the

last term on the right-hand side explicitly represents

the mean noise-induced drift as in (4b). Note that A is

negative in (5) and, without loss of generality, b and E

are positive; however, g can be positive or negative. We

will show that the higher moments of this system are

interrelated in a remarkably simple way and can account

for the parabolic K–S relationship in Fig. 2. Further, we

will derive the full PDF of this system from the corre-

sponding Fokker–Planck equation (FPE) and show that

in addition to being skewed, it has power-law tails, whose

existence is also often associated with nonlinear dy-

namics. We will then demonstrate the relevance of this

generic univariate ‘‘stochastically generated skewed’’

(SGS) PDF even in the real multivariate climate system.

Finally, we will seek to clarify the physical nature of

the stochastic noise responsible for the observed non-

Gaussian circulation statistics. We are especially inter-

ested in determining if it is associated primarily with

adiabatic or diabatic noise (i.e., with turbulent adiabatic

fluxes or rapid diabatic forcing variations). To this end

we will examine a long 108 000-day perpetual winter

simulation (equivalent to 1200 90-day winters) generated

by Sardeshmukh and Sura (2007) using a dry adiabatic

GCM forced only with the observed time-mean diabatic

forcing as a constant forcing. We will assess to what ex-

tent this constant-forcing simulation captures the non-

Gaussian statistics shown in Figs. 1 and 2.

The paper is organized as follows: We begin in section

2 with a derivation of the moment equations for LSF

FIG. 2. The S and K values from Fig. 1 displayed in the form of a

scatterplot. The solid curve is a parabola K 5 1.5 S2 2 0.6. The

estimated local 95% confidence intervals are indicated in the

upper right corner of the figure.
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systems with the extended stochastic forcing (4) and

highlight the necessity of CAM noise to generate skew.

In this context we also note an inconsistency in the ex-

planation of the skew of weekly-averaged circulation

anomalies offered by Sura et al. (2005) in terms of pure

multiplicative noise. In section 3 we discuss how the

existence of CAM noise may be justified in the climate

system with quadratic nonlinearities and ‘‘slow’’ and

‘‘fast’’ system components. Section 4 follows with a de-

tailed analysis of the generic 1D system (5) with CAM

noise. Section 5 presents results from the long adiabatic

GCM simulation and compares them with observations.

To understand the remarkable consistency of the obser-

vational and GCM-simulated higher-order statistics with

those of the generic 1D system, we introduce in section 6

a principle of increasing ‘‘diagonal dominance’’ in the

higher-order moment equations of multicomponent LSF

systems. Concluding remarks, including a brief discussion

of how the 1D approximation may be exploited to esti-

mate the probabilities of extreme weather and climate

anomalies, follow in section 7.

2. Moment equations for the extended system

For any dynamical system of the form

dx

dt
5A(x, t) 1B(x, t)h, (6)

where A is an N-component vector, B is an N 3 M

matrix, and h is an M-component vector of Gaussian

white noises (in the Stratanovich sense) that are

independent and delta-correlated in time as

hhm(t)hm(t0)i 5 d(t2t0), the Fokker–Planck equation

for the evolution of the probability density p(x, tjx0, t0)

may be written

›p

›t
5 2�

i

›

›xi
Ai 1

1

2
�

j
�
m

›Bim

›xj
Bjm

 !
p

" #

1
1

2
�

i
�

j
�
m

›2

›xi›xj
(BimBjmp). (7)

For convenience we will henceforth utilize Einstein’s

notational convention of assuming summation over re-

peated indices; the cumbersome summation signs then

become redundant. This enables (7), for instance, to be

written in the more compact form

›p

›t
5 2

›

›xi
Ai 1

1

2

›Bim

›xj
Bjm

� �
p

� �

1
1

2

›2

›xi›xj
(BimBjmp). (8)

For a linear stochastically forced system with A(x, t) 5

A(t)x 1 fext(t)2D(t) as in (1) and B(x, t) 5 B(x, t) as in

(4), the FPE is

›p

›t
5 2

›

›xi

�
Aij 1

1

2
EikmEkjm

� �
xj 1

1

2
EijmGjm

�

1 ( f ext)i 2 Di

�
p

�
1

1

2

›2

›xi›xj
(BimBjmp)

5 2
›

›xi
f[Mijxj 1 ( f ext)i]pg1

1

2

›2

›xi›xj
(BimBjmp),

(9)

where Mij 5 Aij 1 0.5EikmEkjm. From this, the equations

for the first two (marginal as well as conditional) mo-

ments of x may be derived as

d

dt
hxi5 Mhxi1 fext,

d

dt
C 5 MC 1 CMT

1 ~Q 1 hxifT
ext 1 fexthxTi,

(10)

where ~Qij 5 GimGjm 1 EikmCklEjlm 1 (GimEjkm 1

GjmEikm)hxki. One can now see why D in (1) must be

of the form (4b): any other choice results in hxi being

nonzero even in the absence of external forcing.

Note that Eqs. (10) are of identical form to (2), except

that A and Q are replaced by M and ~Q. In the simplest

scenario in which A, G, E, and fext are constant, the

solutions to (10) are also identical to those in (3a) and

(3b), with A and Q again replaced by M and ~Q. , except

that the equation for the growth of the forecast error

covariance ĈðtÞ [the second equation in (3b)] can no

longer be expressed in the same elegant analytic form.

The extension to state-dependent noise in (4) thus

preserves the linear and closed character of the equations

for the first and second (and also higher-order) moments.

Crucially, the extended system still responds linearly to

external forcing, and the prediction of the expected future

state given an initial state is still a linear prediction. This

extension is thus completely consistent with all the ac-

cumulated evidence cited in the previous section in sup-

port of the LSF approximation. However, it now also

allows for the representation of non-Gaussian statistics,

especially of odd moments such as skew. This is most

easily understood by revisiting (4). For pure additive or

multiplicative noise, or for any uncorrelated mixture

of the two, the magnitude of the stochastic forcing B

is symmetric with respect to the sign of x; there is

therefore no mechanism in (1) to generate skew in the

absence of external forcing. For CAM noise, however,

the magnitude of B is not symmetric with respect to the

sign of x. This introduces an asymmetry in (1) and can
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generate skewed statistics even in the absence of ex-

ternal forcing.

To account for skewed statistics in a linear frame-

work, one therefore needs CAM noise. In this context it

is interesting to recall the study of Sura et al. (2005),

who proposed an explanation of the skew of observed

wintertime 7-day running mean tropospheric circulation

anomalies in terms of pure multiplicative noise. Spe-

cifically, they sought to understand the departure from

Gaussianity of the joint PDF of the two dominant EOFs

of the 750-mb streamfunction (see Fig. 3) in terms of the

statistics of the least damped eigenmode of the baro-

tropic vorticity equation linearized about the long-term

mean flow (Borges and Sardeshmukh 1995), if the mode

is steadily forced and stochastically damped (i.e., if

stochastic perturbations are introduced in its damping

rate). Their model may be expressed in our notation as

dx

dt
5 Ax 1 fext 1 Exh, (11)

where x is a two-component vector whose components

x1 and x2 represent the amplitudes of the real and

imaginary parts of the least damped eigenmode, A is a

constant 2 3 2 matrix with elements (2r 2 v|v 2 r)

corresponding to the real and imaginary parts of the

corresponding eigenvalue, and E is a 2 3 2 identity

matrix multiplied by the amplitude of the scalar Gauss-

ian white noise h. Sura et al. experimented with various

ad hoc choices of fext before finding a joint PDF of x1

and x2 whose departures from Gaussianity capture the

essence of the observed departures, as shown in Fig. 3.

The result is indeed remarkable, especially given the

simplicity of (11). However, it is not internally consis-

tent. Briefly, the model cannot generate skew without

fext because (11) is then exactly symmetric with respect

to the sign of x, but with a nonzero fext, the expected

mean anomaly hxi cannot be zero, because (10) implies

hxi5 2 M 2 1fext, where M 5 (A 1 0.5E2). (12)

Such a pure multiplicative noise model cannot therefore

explain the skew of centered anomalies with zero mean,

as in the observational panel of Fig. 3. The difficulty

does not arise in a CAM noise model because it can

generate skew even in the absence of external forcing.

3. Justification of CAM noise

The existence of CAM noise can be anticipated in any

quadratically nonlinear dynamical system with slow and

fast system components, usually associated with rela-

tively long and short correlation time scales. To see this,

consider the evolution equation for the full state vector

X in the form

dXi

dt
5 LijXj 1 NijkXjXk 1 Fi, (13)

FIG. 3. (left) Departure from Gaussianity of the joint PDF of the principal component time series associated with the two dominant

EOFs of weekly averaged 750-mb streamfunction anomalies during the northern winters (DJF) of 1950–2002. (right) Departure from

Gaussianity of the joint PDF of the time series of the real and imaginary parts of the dominant barotropic perturbation eigenmode of the

Northern Hemispheric circulation obtained when it is steadily forced and stochastically damped. Adapted from Sura et al. (2005). See

text for more explanation.
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where Xi is the ith component of X, the first and second

terms on the right are the linear and quadratically non-

linear adiabatic tendencies (in which we include linear

and quadratically nonlinear damping terms), and all other

tendencies are represented by the ‘‘external’’ forcing Fi.

Writing Xi as a sum of mean and anomaly parts, Xi 5
�Xi 1 X 0i , the equation for the anomalies may be expressed

as

dX 0i
dt

5 [Lij 1 (Nijk 1 Nikj) �Xk]X 0j

1 Nijk(X 0jX
0
k 2 X 0jX 0k) 1 F 0i .

Let X consist of slow components x and fast compo-

nents y, so that X9T 5 [x9Ty9T] and �X
T

5 [�xT �yT]. Then

the equation for the anomalous slow components may

be written

dx9i

dt
5 [Lij 1 (Nijk 1 Nikj)�xk 1 (Nijp 1 Nipj)�yp]x9j

1 [(Nijp 1 Nipj)x9j 1 fLip 1 (Nijp 1 Nipj)�xjg] y9p

2 (Nijp 1 Nipj) x9jy9p 1 Nipq(y9py9q 2 y9py9q)

1 Nijk (x9jx9k 2 x9jx9k ) 1 f 9i .

(14)

Now let Nijp 1 Nipj 5 Eijp, Lip 1 (Nijp 1 Nipj)�xj 5 Gip,

and (Nijp 1 Nipj)x9jy9p 5 Di. Further, approximate

Nipq(y0py0q2y0py0q) as Hijx
0
j 1 Girzr, where H and G are

linear operators and z is a noise vector, and where the

index r uniquely identifies each combination of p and q.

Finally, let Lij 1 (Nijk 1 Nikj)�xk 1 (Nijp 1 Nipj)�yp 1

Hij 5 Aij. Then, neglecting the nonlinear terms involving

x9x9 in (14), we obtain

dx0i
dt

5 Aijx
0
j 1 (Eijpx0j 1 Gip)y0p 2 Di 1 Girzr 1 f 0i . (15)

Dropping the primes on x9 for clarity, defining fext 5 fi9,

and also defining an extended noise vector hT 5 [y0TzT]

with M 5 P 1 R components, we finally arrive at the

form

dxi

dt
5 Aijxj 1 (Eijmxj 1 Gim)hm 2

1

2
EijmGim 1 ( f ext)i,

(16)

which is identical to (1) with B and D as in (4).

It is important to appreciate that it is approximating

the fast variables y9 and z in (15) as stochastic noise hm

in (16) that enables the mean noise-induced drift Di in

(15) to be represented as in (4b) and to close the mo-

ment equations as in (10); otherwise the slow–fast var-

iable separations inherent in (6) and the FPE are not

valid. The conditions under which the components of a

dynamical system may be separable into slow and ‘‘fast

enough’’ components in this sense, as well as procedures

for classifying specific system components as such, have

been the subject of many theoretical and empirical studies

(e.g., Khas’minskii 1966; Papanicolaou and Kohler 1974;

Hasselmann 1976; Penland 1996; Winkler et al. 2001;

Majda et al. 2003; Gardiner 2004; Franzke et al. 2005).

Our intention is not to pursue a similar specific clas-

sification here but merely to highlight how CAM noise

occurs naturally in a quadratically nonlinear system

with a slow–fast separation of time scales. Indeed, the

above considerations make it easier to justify CAM noise

than either pure multiplicative noise or uncorrelated

additive and multiplicative noise.

In the climate system, the quadratically nonlinear

tendency terms are mostly associated with adiabatic

fluxes, and the external forcing term F in (13) represents

a combination of internal diabatic interactions and truly

external forcing. In reality, therefore, F also depends on

the system state. For small perturbations around �X, we

may write

F 0i 5 Fi(X) 2 �Fi ’ ( f ext)i 1
›Fi

›Xj

����
X

X 0j

1
1

2

›2Fi

›Xj›Xk

����
�X

(X 0jX
0
k 2 X 0jX 0k). (17)

Decomposing X9 into slow and fast components and

following a similar development to that from (14) on-

ward, one can see how F9 can also give rise to CAM

noise components. We will present evidence in section 5

that this source of CAM noise is, however, relatively

minor compared to that associated with rapidly varying

adiabatic fluxes for the generation of the non-Gaussian

statistics shown in Figs. 1 and 2.

4. A generic 1D linear system with CAM noise

Having seen that the extended stochastic forcing (4)

provides a mechanism for a linear system to have non-

Gaussian statistics, we now address the issue of what

specific types of non-Gaussian statistics it can generate.

This can be helpful in discriminating between this and

nonlinear dynamical mechanisms of non-Gaussian var-

iability. We are especially interested in determining if

CAM noise can account for the parabolic K–S rela-

tionship in Fig. 2. To this end we consider the simplest

possible 1D system with CAM noise, as in (5). The in-

tegrated FPE for that system may be written

(Mx)p 5
1

2

d

dx
[(E2x2 1 2Egx 1 g2 1 b2)p], (18)
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where M 5 A 1 0.5E2 , 0. Equation (18) may be used

to obtain expressions for the nth-order moments hxni by

multiplying by xn21 and integrating over x. For the first

two moments, this yields hxi 5 0 and hx2i 5

s2 5 2(g2 1 b2)/(2M 1 E2). For the higher moments,

we obtain

M 1
n 2 1

2

� �
E2

� �
hxni

5 2
n 2 1

2

� �
[2Eghxn 2 1i1 (g2 1 b2)hxn 2 2i].

(19)

Note that in general [M 1 0.5(n21)E2] must be negative

for hxni to exist. Using (19) to obtain expressions for

hx3i and hx4i, and remembering that the skew S and

excess kurtosis K are defined as S 5 hx3i/s3 and

K 5 hx4i/s423 gives, after some manipulation,

K 5
3

2

1 1 a

1 1 (3/2)a

� �
S2 1 3

1 1 (1/2)a

1 1 (3/2)a
2 1

� �
$

3

2
S2,

(20)

where a 5 E2/M , 0. The inequality in (20) exists be-

cause both ratios involving a are greater than 1 (see also

Sura and Sardeshmukh 2008). Note that the equality

K 5 1.5 S2 is satisfied only for E 5 0, in which case it

reduces to a triviality: 0 5 0.

Thus, regardless of the model parameters, K exceeds

1.5 S2 in a 1D LSF system with CAM noise. This is a

simple and specific prediction of the character of non-

Gaussian variability. Remarkably, the points in Fig. 2

satisfy this K–S inequality with the same parabolic de-

pendence of K on S, albeit with a small negative bias.

One can similarly make specific predictions for the

other moments using (19). For example, the fifth mo-

ment of x must satisfy

m5 [
hx5i
s5

. 10S 1 3S3 for S . 0
, 10S 1 3S3 for S , 0

�
. (21)

We will attempt to verify this prediction of the 1D

model in section 5.

Finally, we consider the stationary probability density

of the 1D system (5), obtained by solving for p(x) in (18)

as

p(x) 5
1

N [(Ex 1 g)2
1 b2]

1
a

2 1

exp 2
2g

ab
arctan

Ex 1 g

b

� �� �
, (22)

whereN is a normalization constant that ensures that p(x)

integrates to unity (see also van Kampen 1981; Müller

1987). This PDF is clearly skewed if g 6¼ 0 and has a

unique maximum at xmax 5 Eg/(M2E2). We will refer

to it as the generic stochastically generated skewed

probability density function. In addition to skew, the

SGS distribution also has power-law tails, because for

large magnitudes of x we have

p(x) ; x2(1
a
21) exp 2

2g

ab
arctan

Ex

b

� �� �

; x2(1
a
21) exp 7

pg

ab

	 

, (23)

where the 2(1) sign in the exponential factor obtains

for large positive (negative) x. Remembering that a is

negative, this means that if g is positive, p is greater for

large positive x than for large negative x, but it has the

same exponent as the power-law tail. We will also at-

tempt to verify this specific prediction of the 1D model

in the next section.

Before ending this section, we note that (5) is the

simplest but not the only possible stochastically forced

1D system with deterministic linear dynamics that can

have non-Gaussian statistics. The most general such

system is the linear system

dx

dt
5 Ax 1 �

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(Emx 1 gm)2

1 cmx]

q
hm 2

b

2
1 f ext

(24)

perturbed by so-called ‘‘radical noise’’, where b 5

�(Emgm 1 0.5cm), and where to avoid confusion we

have discontinued the use of the Einstein summation

convention. Equation (5) is a special case of (24) with

cm [ 0, f ext [ 0, and 2D noise with components h1 and

h2. Defining E2 5 �E2
m, G2 5 �g2

m, and M 5 A 1

0.5E2 , 0, the integrated Fokker–Planck Eq. (18) is

modified in this more general case to

(Mx 1 f ext)p 5
1

2

d

dx
[(E2x2 1 2bx 1 G2)p]. (25)

Note that hxi 5 2M21f ext, so the system still responds

linearly to external forcing, and the prediction of the

expected future state given an initial state is still a linear

prediction. To describe the dynamics of centered anom-

alies with zero mean, we set f ext 5 0, as in (5). Following

a development very similar to that from (19) to (22), one

can then derive similar equations for the relationships

between the moments and also solve (25) directly for the

PDF (see appendix). Importantly, the K–S relationship

K $ 1.5S2 and the m52S relationship (21) remain valid

in all cases, but the PDF can differ from (22). Our chief

motivation for introducing this more general process (24)

here, however, is to point out that if there is no multi-

plicative noise (i.e., if E [ 0), then the K–S relationship
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becomes an equality (K [ 1.5S2), which, unlike (20), is

valid even for nonzero values of K and S.

If both E [ 0 and G [ 0, the solution of (25) with

f ext 5 b/2 is a gamma PDF with a shape parameter 1/2

and a scale parameter 2b/M. This result may come as a

surprise because gamma PDFs are usually associated

with the squares of Gaussian variables. Nonetheless, it

could have been readily anticipated from (1). In the 1D

case, for constant model parameters and no external

forcing in (1), the equation for the square of the state

variable in (1) can be cast in the form (24) with E 5 0,

G 5 0, and f ext 5 b/2.

Although (24) incorporates interesting extensions of

the simple model (5) in the 1D case, we have not pur-

sued them further in this study even though the deter-

ministic dynamics remain linear. This is mainly because

it is difficult to justify the relevance of full-fledged

radical noise in the nD climate system from first prin-

ciples. As the previous section showed, it is easier to

justify CAM noise, which is a special case of radical

noise, given the importance of quadratic nonlinearities

in the nD climate system. One can nonetheless imagine

the general 1D linear model (24) being useful in many

other contexts than the one considered in this study.

5. Results from a long dry adiabatic GCM
simulation with constant forcing

Are the skewness and kurtosis of the daily 300-mb

vorticity anomalies shown in Fig. 1 due to CAM noise,

and if so, are they associated primarily with turbulent

adiabatic or diabatic forcing fluctuations? To clarify

this, we examine a long 1200-winter simulation of the

northern winter climate generated by Sardeshmukh and

Sura (2007) using a dry adiabatic atmospheric general

circulation model forced only with the observed long-

term winter-mean diabatic forcing as a constant forcing.

The model has a T42 spatial discretization in the hori-

zontal and five levels in the vertical, and is exactly of the

form (13), but with a prescribed constant forcing �Fi es-

timated from observations. Despite the complete neglect

of forcing variations F 0i , the model reproduces many

second-order statistics of the observed atmospheric cir-

culation variability as described fully in Sardeshmukh

and Sura (2007). Figure 4, shown in an identical format to

Fig. 1 but constructed from the model output, shows that

the model also captures many features of the observed

skewness and kurtosis of the daily 300-mb vorticity

anomalies. There are some notable areas of discrep-

ancy, especially over the Atlantic sector; to what extent

this is due to the neglect of F 0i or the coarse spatial

resolution of the model is unclear at present. None-

theless, the generally successful simulation of the es-

sential character of the observed S and K fields, despite

the model’s neglect of transient diabatic forcing, sug-

gests that the stochastic generators of these higher-

order vorticity moments are mostly associated with tur-

bulent adiabatic fluxes. Furthermore, the fact that the

model also captures the observed parabolic K–S rela-

tionship in Fig. 5, consistent with the 1D theory, sug-

gests a dominant role for the local adiabatic fluxes in

generating these moments.

One advantage of examining a long 1200-winter sim-

ulation is that one can have much greater confidence in

the statistical significance of the higher-order statistics.

Figure 6 attempts to verify the relationship (21) be-

tween the fifth moments and skewness predicted by the

1D theory. (In view of the enormous sampling uncer-

tainties involved, we did not attempt to do this with our

30-winter observational dataset). Results are shown

for the simulated daily 300-mb vorticity as well as the

500-mb geopotential height anomalies at all Northern

Hemispheric grid points. Figure 6 clearly bears out the

prediction of the 1D theory even in the multicomponent

FIG. 4. As in Fig. 1, but obtained from a long 1200-winter simulation of a dry adiabatic GCM with

prescribed constant forcing, as described in the text.
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GCM simulation, which again highlights not only the

relevance of CAM noise but also the dominance of

the local stochastic dynamics in generating the higher

moments. This is a powerful validation of the linear 1D

theory.

Figure 7 verifies another major prediction of the 1D

theory: that the PDFs must have power-law tails. Here

we also attempted a comparison with observations at

two North Pacific locations of the largest skew of 300-mb

vorticity and 500-mb heights. Our hope was that the

relatively large deviations from Gaussianity at those

locations might generate more statistical confidence in

the character of the estimated PDF tails; however, we

did not attempt to put error bars on those tails. The

observational PDFs in the left panels of Fig. 7 do appear

to have power-law tails, at least on the ‘‘fat’’ tail side.

The right panels show the corresponding PDFs from the

model simulation, now with error bars. They clearly have

power-law tails, which remarkably have the same slope

as the observed for the vorticity PDF and only a slightly

steeper slope than the observed for the geopotential

height PDF. The model’s power-law tail extends on the

‘‘fat tail’’ side to values of x up to seven standard devia-

tions. On the ‘‘thin tail’’ side, the probability densities

are so low as to be a challenge to estimate even from a

1200-winter long simulation. Still, a hint of power-law

dependence, at least for the 300-mb vorticity, is evident in

the lower right panel of Fig. 7, with the same slope as on

the fat tail side, as predicted by the linear 1D theory.

6. A principle of diagonal dominance in the
higher-order moment equations

The success of the local 1D model (5) in explaining

the essential character of the observed and GCM-

simulated non-Gaussian statistics may come as a surprise,

given the obvious importance of nonlocal dynamics in

the multivariate climate system. The key point, how-

ever, is that this success applies to the understanding

and simulation of the higher-order non-Gaussian sta-

tistics and power-law tails. We argue below that the 1D

model (5) becomes progressively better at representing

the higher-order statistics of multivariate systems through

a principle of increasing diagonal dominance in the

higher-order moment equations.

Diagonal dominance refers to the progressively

greater importance of the self-correlation terms in the

higher-order moment equations of multivariate sys-

tems. Consider, for illustrative purposes, (1) and (4)

with fext 5 0 and time-independent A, G, E, and D, and

FIG. 5. As in Fig. 2, but from the 1200-winter GCM simulation.

FIG. 6. Scatterplots of the fifth moments vs skewness S of the (left) daily 300-mb vorticity and

(right) 500-mb geopotential height variations in the 1200-winter GCM simulation. The straight

lines and curves facilitate comparison with the prediction of the linear 1D theory [Eq. (21)]. The

straight lines are 10S; the curves are 10S 1 S3.
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also in a space in which each system component is

normalized by its standard deviation so that its marginal

PDF is a standard Gaussian with unit variance. The

equation for the nth moment hxn
i i of the ith component

of x, obtained by multiplying (1) by xn21
i and taking

expectation values, is then

1

n

d

dt
hx n

i i5 0

5 Aiihx n
i i1 �

j 6¼i
Aijhxn 2 1

i xji

1 �
m

Gimhxn 2 1
i hmi

1 �
m

�
j

Eijmhxn 2 1
i xjhmi

2 hxn 2 1
i iDi, (26)

where for added clarity we have discontinued the use of

the Einstein summation convention. The first term on

the right-hand side of (26) is a self-correlation term. The

second term involves correlations between powers of xi

and other system components, whose magnitudes are

generally smaller than unity and become small for large

n. To see this, consider the regression xi 5 rijxj 1 eij of

xi on xj, where jrijj, 1 and eij is uncorrelated with xj.

Then hxn21
i xji 5 h(rijxj 1 eij)

n21xji’rn21
ij hxn

j i, which ap-

proaches zero for large n. The second term in (26) is

thus small for large n. By a similar argument, the con-

tributions to the fourth term from cross-correlations

between xi and xj 6¼i are also small for large n. This en-

ables the third and fourth terms to be approximated and

combined as follows:

�
m

Gimhxn 2 1
i hmi1 �

j
Eijmhxn 2 1

i xjhmi
 !

5 hxn 2 1
i �

m
Gim 1 �

j
Eijmxj

 !
hmi

’ hxn 2 1
i �

m
(Gim 1 Eiimxi)hmi

.

Then, dropping the subscript i for clarity, (26) may be

approximated for each component xi as

0 ’ Ahxni1 hxn 2 1 �
m

(Gm 1 Emx)hmi

2 hxn 2 1i 1
2
�
m

GmEm

for large n. And finally, without loss of generality, one

may combine all the uncorrelated additive noise terms

into a single term bj1 and all the CAM noise terms into

another term (Ex 1 g)j2, where j1 and j2 are indepen-

dent Gaussian white noises, as follows:

FIG. 7. (left) Observed and (right) GCM-simulated PDFs of standardized daily wintertime (top) 500-

mb geopotential height and (bottom) 300-mb vorticity anomalies at the locations of largest skew in the

North Pacific. The results are shown on a log–log scale, with the probabilities of the negative anomalies

(circles) flipped over to the positive side for better comparison with those of positive anomalies (trian-

gles). The curve in all panels is a reference Gaussian. Results are not shown for standardized anomaly

magnitudes of less than unity. The straight lines are simple linear fits to the PDF tails.
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Note, however, that this is identical to the equation for

hxni in the 1D system (5). The increasing importance of

self-correlation terms in the higher-order moment

equations is thus the basic reason for the relevance of

the 1D model (5) in the dynamics of the higher-order

moments even in multivariate systems.

The fact that the higher-order moment equations are

more diagonally dominant also helps one understand

why the K–S parabolas in Figs. 2 and 5 are shifted

slightly downward relative to the prediction (20) of the

1D theory. Let us say that for each component xi of a

multivariate system, the dynamical equation is (5) with

an additional error term

dx

dt
5 Ax 1 bh1 1 (Ex 1 g)h2 2

1

2
Eg 1 error, (27)

where we have again dropped the subscript i for con-

venience. The moment equations are then hxi 5 0 and

hx2i5 s2 5 2
g2 1 b2

2M 1 E2
1 e(2)s2

for the first two moments, and

hxni5 2
n 2 1

2

� 

M 1 n 2 1

2

� 

E2

� �
3 [2Eghxn21i1 (g2 1 b2)hxn22i]
1 e(n)sn (28)

for n . 2. The quantities e(n) represent the error made in

hxni/sn by ignoring the nonlocal dynamics. From this

the local K–S relationship between K and S may be

derived as

K 5
3

2

1 1 a

1 1 (3/2)a

� �
S2 1 3

1 1 (1/2)a

1 1 (3/2)a
2 1

� �

2
3

2

1 1 a

1 1 (3/2)a

� �
Se(3) 2 3

1 1 (1/2)a

1 1 (3/2)a

� �
e(2) 1 e(4),

(29)

in which, as in (20), the ratios involving a are all greater

than unity. We may therefore rewrite this as

K .
3

2
S2 1 r, (30)

where

r 5 3
1 1 (1/2)a

1 1 (3/2)a
2 1

� �
2 3

1 1 (1/2)a

1 1 (3/2)a

� �
e(2)

2
3

2

1 1 a

1 1 (3/2)a

� �
Se(3) 1 e(4). (31)

Because diagonal dominance is stronger for the higher

moments, we expect that je(4)j, je(3)j, je(2)j and that

therefore the first two terms on the right-hand side will

dominate in (31). As mentioned previously, the first term

is always positive. The second term is negative if e(2) is

positive. One can provide a theoretical argument as well

as empirical evidence that e(2) is positive. The former

relies on the fact the linear operator A in (1) is in almost

all geophysical contexts a ‘‘non-normal’’ operator that

does not commute with its transpose. This nonnormality

of A (which refers to the nonorthogonality of the ei-

genfunctions of A and should not be confused with non-

Gaussianity) leads to a greater variance of x than for a

‘‘normal’’ A with the same eigenvalues (Ioannou 1995).

In most cases, this nonnormality is associated with the

ability of anomalies to draw energy from a background

state, for which there is pervasive evidence and which

is indeed one of the cornerstones of dynamical meteo-

rology and oceanography. Most recently, Newman and

Sardeshmukh (2008) have confirmed that the variance

budget of observed extratropical weekly circulation

anomalies is dominated by a local balance between

stochastic forcing and local damping and that nonlocal

dynamical effects increase the anomaly variance at all

locations. Such enhancements of variance cause the K–S

parabola to have a slight negative bias, as evident in

Figs. 2 and 5. Note, however, that the 1.5S2 dependence

of K on S is still preserved, consistent with our simple

analysis here.

7. Discussion and concluding remarks

In this paper we demonstrated that certain types of

non-Gaussian statistics are consistent with linear sto-

chastically forced (LSF) dynamics with correlated ad-

ditive and multiplicative (CAM) noise forcing. In par-

ticular, we emphasized that skewed PDFs can be rec-

onciled with such LSF models. We also showed that

0 ’ Ahxni1 hxn 2 1 �
m

(Gm 1 Emx)hmi2 hxn 2 1i 1
2
�
m

GmEm

5 Ahxni1 hxn 2 1 �
m0

Gm0hm0 i1 hxn 2 1 �
m00

(Gm00 1 Em00x)hm00 i2 hxn 2 1i 1
2
�
m00

Gm00Em00

5 Ahxni1 hxn 2 1bj1i1 hxn 2 1(g 1 Ex)j2i2 hxn 2 1i 1
2

Eg.
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some remarkable relationships found both in observa-

tions and in a long dry adiabatic GCM simulation

among the third, fourth, and fifth moments, and also

power-law tails are consistent with the simplest 1D LSF

model with CAM noise. We attributed the 1D model’s

success to a principle of increasing ‘‘diagonal domi-

nance’’ in the higher-order moment equations of multi-

variate systems, associated with the increasing impor-

tance of the self-correlation terms in those equations.

It should be emphasized that not all types of non-

Gaussian behavior observed in the climate system may

be reconcilable with LSF dynamics with CAM noise.

The 1D model predicts, for instance, a unique PDF

maximum and therefore cannot account for the multiple

PDF maxima sometimes claimed to exist in observations

and climate model simulations (e.g., Hansen and Sutera

1986; Kimoto and Ghil 1993; Corti et al. 1999; Monahan

et al. 2000, 2001). It is likely that multidimensional LSF

models also cannot account for multiple PDF maxima,

although we did not actually show this. A clear demon-

stration of more than one PDF maximum has been hin-

dered in previous studies by the sampling uncertainties

associated with limited observational records and rela-

tively short climate model integrations and also by

methodological limitations (e.g., Stephenson et al. 2004;

Christiansen 2005). Very long integrations with state-of-

the-art coupled climate models could resolve the issue,

but the fact that one has to work so hard to show this may

be a sign that any multimodality as may be exist is weak

and arguably not of great practical consequence. It is

also noteworthy that Berner and Branstator (2007)

found only unimodal PDFs in the longest integration

performed to date—of 14 million days, with an (ad-

mittedly low-resolution) atmospheric GCM.

It should also be recognized that the LSF approxi-

mation of coarse-grained anomaly dynamics is ultimately

only an approximation, and like all approximations it is

not equally accurate in all situations. In climatic contexts,

its applicability is mostly limited to departures from the

annual cycle and does not extend to the annual cycle

itself (Huang and Sardeshmukh 2000). Some role for

deterministic nonlinear dynamics has also been argued,

for instance, in tropical SST variability (e.g., Penland

and Sardeshmukh 1995; Monahan and Dai 2004; An and

Jin 2004), extratropical atmospheric circulation varia-

bility (e.g., Kravtsov et al. 2005; Kondrashov et al. 2006;

Newman and Sardeshmukh 2008), and sea surface wind

variability (e.g., Monahan 2004). Nonetheless, the LSF

approximation is a powerful approximation for diag-

nostic and prediction purposes, whose utility has been

demonstrated in numerous studies and also in this paper.

Perhaps the most important result from our analysis is

that LSF models with CAM noise can explain skewed

statistics. They also make falsifiable predictions, as in

(20) and (21), of the specific manner in which the kur-

tosis and fifth moments are related to skew. From the

evidence presented here, these predictions appear to be

borne out both in observations and in a dry adiabatic

GCM simulation. We are currently unaware of any

simple nonlinear model with the same ability to explain

such relationships among higher-order moments. The

existence of power-law PDF tails is another prediction of

the simple linear 1D model (5) that also appears to be

borne out in reality and in our GCM simulation. Al-

though it is true that several types of nonlinear models

can also account for power-law tails (see Newman 2005

for a review), our 1D model can additionally account for

the differing magnitudes of the positive and negative tails

(as in lower right panel of Fig. 7). It is not clear to what

extent nonlinear models can do this.

Finally, our analysis raises the exciting possibility of

using the SGS distribution (22) [or its extended forms

(A1) and (A2)] to estimate and predict the probabilities

of extreme anomalies. Given the relevance of diagonal

dominance, we believe that this would provide a simple,

dynamically justifiable, and arguably more accurate way

to estimate the tails of anomaly PDFs than direct esti-

mations from short observational records or GCM in-

tegrations. The key point is not only that one can ap-

proximate the distribution of many climate variables as

an SGS distribution, but also that its parameters can be

accurately estimated from relatively short observational

records or GCM integrations by fitting (5) to the ob-

served, simulated, or predicted time series of those var-

iables. This is a topic of current research.
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APPENDIX

Stationary Probability Density p(x) of the
Stochastically Perturbed Process (24)

The solution p(x) of (25) is different if E2G2 is larger

or smaller than b2.

If E2G2 . b2, let g2 5 E2G22b2. The solution of (25)

may then be written as

p(x) 5
1

N (E2x2 1 2bx 1 G2)
1
a
21

exp
2

g
f ext 2

b

a

� �
arctan

E2x 1 b

g

� �� �
. (A1)
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If E2G2 , b2, let g2 5 b22E2G2. Then the solution of

(25) is

p(x) 5
1

N (E2x2 1 2bx 1 G2)
1
a
21 E2x 1 b 2 g

E2x 1 b 1 g

����
����

1
g

f ext2
b

að Þ
.

(A2)

Note that (A1) reduces to (22) for f ext 5 0 and 2D noise

with (E1, g1, c1) 5 (0, b, 0) and (E2, g2, c2) 5 (E, g, 0) in

(24). Also, (A2) reduces to the gamma probability den-

sity function p ; x1/221 exp [2x/(b/2M)] for f ext 5 b/2

and G [ 0 and E [ 0 in (24).
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