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ABSTRACT

The effect of air–sea coupling on tropical climate variability is investigated in a coupled linear inverse

model (LIM) derived from the simultaneous and 6-day lag covariances of observed 7-day running mean

departures from the annual cycle. The model predicts the covariances at all other lags. The predicted and

observed lag covariances, as well as the associated power spectra, are generally found to agree within

sampling uncertainty. This validates the LIM’s basic premise that beyond daily time scales, the evolution of

tropical atmospheric and oceanic anomalies is effectively linear and stochastically driven. It also justifies a

linear diagnosis of air–sea coupling in the system.

The results show that air–sea coupling has a very small effect on subseasonal atmospheric variability. It has

much larger effects on longer-term variability, in both the atmosphere and the ocean, including greatly in-

creasing the amplitude of ENSO and lengthening its dominant period from 2 to 4 years. Consistent with these

results, the eigenvectors of the system’s dynamical evolution operator also separate into two distinct, but

nonorthogonal, subspaces: one governing the nearly uncoupled subseasonal dynamics and the other governing

the strongly coupled longer-term dynamics. These subspaces arise naturally from the LIM analysis; no band-

pass frequency filtering need be applied. One implication of this remarkably clean separation of the uncoupled

and coupled dynamics is that GCM errors in anomalous tropical air–sea coupling may cause substantial errors

on interannual and longer time scales but probably not on the subseasonal scales associated with the MJO.

1. Introduction

Despite many years of coordinated model develop-

ment in the climate research community, realistic simu-

lations of tropical variability have remained elusive in

coupled climate models, both on the interannual time

scales of El Niño–Southern Oscillation (ENSO) and on

the subseasonal time scales of the Madden–Julian os-

cillation (MJO). Figure 1 highlights one aspect of the

difficulty for 18 global coupled models participating

in phase 3 of the World Climate Research Program’s

Coupled Model Intercomparison Project (CMIP3), used

in the Fourth Assessment Report (AR4) of the Inter-

governmental Panel on Climate Change (IPCC). The

model spectra of the projections on the dominant pattern

of observed monthly tropical SST variability during

1950–99 show not only very different total power com-

pared to the observed spectrum but also different time

scales in which they are concentrated. In many cases,

they also appear more sharply peaked than the ob-

served spectrum, which, apart from a rather broad peak

at 4-yr periods, approximates the spectrum of red noise

with an 8-month correlation scale. Such an observed

spectrum is suggestive of a damped linear system with

broadband stochastic forcing (i.e., forcing with a cor-

relation scale much shorter than 8 months).

One possible source of the climate model errors is

the misrepresentation of shorter-term tropical variability

(e.g., Fedorov et al. 2003), given some evidence that MJO

episodes can initiate ENSO events (e.g., Kessler et al.

1995; McPhaden 1999; van Oldenborgh 2000; Bergman

et al. 2001; Zhang and Gottschalck 2002; Zavala-Garay

et al. 2005; Roundy and Kiladis 2006; McPhaden et al.

2006). Additionally, ENSO itself may modify MJO
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variability (e.g., Kessler 2001; Tam and Lau 2005; Pohl

and Matthews 2007; Hendon et al. 2007). Thus, it is of

concern that not only do GCMs continue to have diffi-

culty reproducing MJO phase speeds and vertical struc-

tures (e.g., Lin et al. 2004, 2006) but also that MJO

simulations are particularly problematic in the western

Pacific (e.g., Sperber et al. 2005; Zhang et al. 2006).

In searching for the causes of such model deficiencies,

a key research issue is how air–sea coupling affects MJO

and ENSO development. Although coupled theories of

ENSO are very well established (e.g., Bjerknes 1969;

Schopf and Suarez 1988; Battisti and Hirst 1989; Jin

1997; Wang et al. 1999), it is less clear how important

coupling is to the initiation of ENSO events and pre-

cisely how it affects the overall stability of the system.

How air–sea coupling influences the MJO is another

unsettled question. Although SST anomalies of a few

tenths of a degree Celsius are apparently induced by

FIG. 1. Spectra of the leading PC of monthly tropical SST variability from observations (pink line)

compared to spectra derived from the output of the C-LIM (blue line) and the ensemble members of the

twentieth-century (20c3m) IPCC AR4 coupled GCMs (thin black, yellow, blue, and green lines). The

observed spectrum was computed from the time series of the leading PC as determined from an EOF

analysis of monthly SST anomalies in the region between 258S and 258N for the years 1950–99. The

C-LIM was constructed as described in the text from weekly 1982–2005 data, and then a 100-member

ensemble of 50-yr C-LIM model runs was made. For consistent comparison and because it is the real

system these sophisticated models are trying to simulate, both C-LIM and CGCM model outputs were

projected onto the leading observed EOF of monthly anomalous SST to produce PC time series in each

model for the same 1950–99 period. Gray shading indicates the 95% confidence interval from the C-LIM,

based on the spread of its 100 ensemble members (see text for more details).
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MJO winds and cloudiness that drive changes in sur-

face heat and radiative fluxes (Shinoda et al. 1998;

Woolnough et al. 2000), it is unclear how—and how

strongly—those SST anomalies then feed back on the

MJO. Studies with AGCMs coupled to an interactive

ocean report conflicting results. Depending upon the

model, coupling either causes the magnitude of intra-

seasonal variability to increase (Zheng et al. 2004) or to

decrease (Inness and Slingo 2003; Pegion and Kirtman

2008) relative to uncoupled simulations. Some studies

find that coupling leads to improved MJO simulations

and/or forecasts (Zheng et al. 2004) but others do not

(Hendon 2000; Liess et al. 2004; Lin et al. 2006).

To improve the tropical simulations of global coupled

GCMs, one needs diagnostic methods that are equally

applicable to observed and simulated climates. One useful

approach has been to construct so-called intermediate

coupled models that make key simplifying assumptions

but still retain the important physics (e.g., Cane and

Zebiak 1985; Battisti and Hirst 1989; Neelin and Jin 1993;

Chang 1994; Jin 1997; Neelin and Zeng 2000). We focus

here on a different but complementary approach: to di-

agnose the impacts of air–sea coupling in an empirically

determined dynamical model of the observed coupled

system. Specifically, we construct a coupled linear inverse

model (LIM), following procedures similar to those de-

scribed in Penland and Sardeshmukh (1995, hereafter

PS95), in which the dynamical evolution operator is es-

timated from the observed statistics of weekly averaged

tropical variations over the last 24 years. Evidence that

such a LIM should be useful for our diagnostic pur-

poses is provided in Fig. 1 by the favorable comparison

of the LIM-predicted spectrum (along with confidence

intervals; see section 3c) of the leading PC of tropical

SST with the corresponding observed and coupled

GCM spectra. Our LIM diagnosis may not necessarily

lead to the same kind of physical understanding as the

intermediate coupled models, but because it simulates

the observed variability just as well as—or even better

than—many coupled GCMs, we believe it can provide

a reliable quantification of the coupling effects.

Most previous LIMs were constructed using only at-

mospheric or only oceanic data. Atmospheric LIMs

(A-LIMs; Penland and Ghil 1993; Winkler et al. 2001,

hereafter WNS; Newman et al. 2003; Newman and

Sardeshmukh 2008) for winter and summer seasons,

based on weekly Northern Hemisphere streamfunction

and tropical diabatic heating anomaly data, and oceanic

LIMs (O-LIMs; Penland and Matrosova 1994; PS95;

Penland 1996; Penland and Matrosova 1998; Johnson

et al. 2000; Newman 2007; Alexander et al. 2008), based

on seasonal or annual mean SST anomaly data, have

both been shown to have forecast skill competitive with

that of comprehensive nonlinear GCMs. Indeed Penland’s

O-LIM is currently used to make real-time SST fore-

casts that are included in the National Oceanic and

Atmospheric Administration (NOAA) regular Climate

Diagnostics Bulletin. Newman et al. (2003) showed that

their A-LIM’s week 2 tropical diabatic heating forecasts

had comparable skill to that of a bias-corrected version

of the GCM used operationally in 1998 at the National

Centers for Environmental Prediction (NCEP; Hamill

et al. 2004). Over the western Pacific, a potentially im-

portant region of air–sea coupling on subseasonal scales,

the A-LIM’s skill was considerably higher.

One can think of several ways to improve the A-LIMs

and O-LIMs just mentioned. However, instead of doing

this independently of each other, it is evident that much

could be gained by coupling the two. From a forecasting

standpoint alone, one can imagine how such a coupled

LIM (C-LIM) might improve upon the skill of each. For

example, equatorial heating anomalies at the date line

would evolve differently depending upon the SST con-

ditions. If MJO propagation was significantly impacted

by air–sea interactions, then the C-LIM would also be

better at predicting the MJO than an A-LIM. Also,

some of the unpredictable rapid variations treated as

stochastic noise in the seasonal O-LIM may be associ-

ated with predictable atmospheric variations on weekly

time scales and may lead to improved SST prediction

skill. Beyond improving forecasts of its component LIMs,

however, a C-LIM would allow explicit separation of

the ‘‘internal’’ oceanic and atmospheric dynamics from

the coupled dynamics (for an extratropical example, see

Newman et al. 2000).

The primary aim of this paper is to construct a C-LIM

useful not only for simulating and predicting tropical

anomalies on subseasonal to seasonal scales but also for

diagnosing the effects of air–sea coupling on tropical

climate variability in a unified dynamical framework.

Details of the C-LIM’s construction, including the ob-

servational datasets employed, are discussed in section 2.

In section 3, we show that coupling improves both at-

mospheric and SST forecast skill; that is, the C-LIM’s

forecast skill is as good as or better than the A-LIM’s

and O-LIM’s skills in their respective domains. As a

further key demonstration of linear dynamics justify-

ing our linear diagnosis here, we show that the C-LIM

reproduces the observed lag covariances at much lon-

ger lags than the 6-day lag at which it is trained and also

reproduces the power spectra of the leading PCs of

both SST and diabatic heating variability. Section 4

presents a detailed diagnosis of the coupling impacts

on both atmospheric and oceanic variability. The in-

terpretation of that diagnosis is greatly clarified by a

striking discovery of this paper: a sharp separation of
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the eigenvectors of the C-LIM’s (and therefore presum-

ably also the real tropical climate system’s) dynamical

evolution operator into two distinct sets, a set governing

the nearly uncoupled subseasonal dynamics and another

governing the strongly coupled longer-term dynamics.

Section 5 presents further results on how coupling im-

pacts MJO and ENSO evolution, and concluding re-

marks are made in section 6.

2. Model details and data

Linear inverse modeling may be broadly defined as

extracting the dynamical evolution operator L of the

system

dx

dt
5 Lx 1 j (1)

from its observed statistics, as described, for example, in

PS95 (see also Penland 1989, 1996; Penland and Ghil

1993; DelSole and Hou 1999; WNS; Newman et al. 2003;

Newman 2007; Alexander et al. 2008; Newman and

Sardeshmukh 2008). The procedure and its strengths

and pitfalls are discussed at length in these papers, so we

will only provide its bare essentials here for convenience

of later discussion.

In any multidimensional statistically stationary system

with components xi, one may define a time lag covari-

ance matrix C(t) with elements Cij(t) 5 hxi(t 1 t)xj(t)i,
where angle brackets denote a long-term average. In

linear inverse modeling, one assumes that the system

satisfies C(t) 5 G(t)C(0), in which, importantly, G(t) 5

exp(Lt) and L is a constant matrix. One then uses this

relationship to estimate L from observational estimates

of C(0) and C(t0) at some lag t0. In such a system, any

two states separated by a time interval t are related as

x(t 1 t) 5 G(t)x(t) 1 e, where e is a random error vector

with covariance E(t) 5 C(0) 2 G(t)C(0) GT(t). Note

that the system need not have Gaussian statistics for

these relations to hold. However, for its statistics to be

stationary, L must be dissipative (i.e., its eigenvalues

must have negative real parts). In a forecasting context,

G(t)x(t) represents the best forecast (in a least squares

sense) of x(t 1 t) given x(t), and E(t) represents the

expected covariance of its error. Note that for large lead

times t, G(t)x(t) 0 0 and E(t) 0 C(0). Note also that

unlike multiple linear regression, determination of G at

one lag t0 gives G at all other lags. One can also use the

estimates of the forecast error covariance to estimate

the statistics of the noise forcing j responsible for the

forecast error e.

For our C-LIM, we choose the model state vector x

to be

x 5

TO

c
H
x

2
664

3
775,

where TO is anomalous sea surface temperature, c is

anomalous atmospheric streamfunction, H is anoma-

lous diabatic heating, and x is anomalous velocity po-

tential. An atmospheric subvector is also defined as

xA 5

c
H
x

2
4

3
5.

All quantities represent 7-day running means. Rapid

fluctuations in wind stress, heat flux, and other phe-

nomena with correlation time scales much shorter than

7 days therefore constitute the noise term in (1). Data

from a period of 24 yr (1982–2005) were used to define

x. The diabatic heating rates were determined from

an improved iterative solution of the ‘‘chi problem’’

(Sardeshmukh 1993; Sardeshmukh et al. 1999), as de-

scribed in WNS. Weekly averaged SST data were ob-

tained from the NCEP Optimum Interpolation (OI)

SST analysis version 2 dataset (Reynolds et al. 2002) and

then interpolated to daily resolution. Anomalies were

defined by removing the annual cycle from the 7-day

running means, in which the annual cycle was defined by

running a 31-point smoother on the daily climatology of

the lowpass data. Circulation anomalies (c and x) were

determined at 250, 550, and 850 hPa, and heating

anomalies were determined at 400, 700, and 1000 hPa.

All circulation variables were spectrally truncated to

T21 and transformed onto a Gaussian grid; SST was

area averaged onto this same grid. Diabatic heating

anomalies were further smoothed using a T21 spectral

filter that attenuates small-scale features and Gibbs

phenomena (Sardeshmukh and Hoskins 1984).

The filtered anomaly fields were then projected onto

their leading empirical orthogonal functions (EOFs),

which were determined in the tropical belt 258S–258N.

Prior to computing the EOFs, each field was normalized

by its climatological root-mean-square amplitude over

the domain. The EOFs of streamfunction and velocity

potential were each computed from a vector combining

the normalized 850-, 550-, and 250-hPa anomalies, and

the EOFs of heating were computed from a vector com-

bining the normalized 1000-, 700-, and 400-hPa anoma-

lies, rather than at each level separately. The leading 20, 7,

17, and 3 EOFs of TO, c, H, and x, respectively, were

retained, which explained about 76%, 44%, 36%, and

67% of the variability of their respective fields. Locally,

however, the amount of variance explained can be

considerably higher (or lower), as seen in Fig. 2, which
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shows the (untruncated) variance of TO, H at 400 hPa

(H400), c and x at 250 hPa (c250; x250), and the local

fraction of variance retained by the truncated EOF basis

for each field.

The time-varying coefficients of these EOFs [i.e., the

principal components (PCs)], define the 47-component

state vector x. A training lag of t0 5 6 day was used to

determine L. The EOF truncations and training lag

were chosen to maximize the LIM’s cross validated

forecast skill while avoiding some sampling problems

(see below and WNS), but otherwise they do not qual-

itatively affect any of the points made in this paper. In

particular, retaining more EOFs, and thus more vari-

ance, did not result in significant and unambiguous

improvements in the metrics considered in the next

section, nor was the estimate of the impact of coupling

materially altered. Moreover, retaining several less TO

and H400 EOFs also gave similar results except over the

Indian Ocean region. We also constructed a corre-

sponding A-LIM (O-LIM) using the same atmospheric

(SST) truncation so that xA (TO) was represented by a

27 (20) component state vector.

For use in a calculation regarding MJO evolution, we

also constructed a ‘‘high pass’’ filtered dataset by sub-

tracting the centered 49-day mean from each day. High-

pass EOFs and PCs were then determined from the

combined data vector, rather than determining EOFs

for each variable separately as in constructing the LIM.

The resulting leading two PCs (not shown), although

not based on meridionally averaged data as in Wheeler

and Hendon (2004), strongly correspond to (i.e., are

highly correlated with) their real-time multivariate MJO

FIG. 2. Total variance (contours) and fraction of local variance explained by EOF truncation (gray shading) for

selected variables used in the model: (top to bottom) SST(TO) with contour interval 0.25 K2, 850-hPa streamfunction

(c850) with contour interval 2.5 3 1012 m4 s22, diabatic heating (H400) with contour interval 7.5 3 10211 K2 s22, and

250-hPa velocity potential (x250) with contour interval 1.5 3 1012 m4 s22. Thicker contours indicate larger values,

starting at and increasing from 1 K2, 1 3 1013 m4 s22, 30 3 10211 K2 s22, and 9 3 1012 m4 s22, respectively.
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series 1 (RMM1) and 2 (RMM2). High-pass TO, H400,

and 850-hPa winds regressed on PC1 and PC2 are shown

in Fig. 3; note that these fields are not truncated in the

EOF space used for the LIM. Although these regressed

fields are based on a relatively crude 14–98-day band-

pass filter, they are quite similar to composites of

20–100-day bandpass-filtered precipitation, SST, and sur-

face wind anomalies associated with .1 sigma excursions

of RMM1 and RMM2 (Waliser et al. 2009), except that

our spatial smoothing and regression approach yields

somewhat reduced amplitudes.

3. Evaluating the LIM

a. Forecast skill

We first investigate whether including both atmo-

spheric and oceanic components in the state vector im-

proves LIM forecast skill by comparing the C-LIM’s skill

to either O-LIM’s or A-LIM’s skill alone. As described in

WNS, all estimates of forecast skill were determined by

comparing cross-validated (i.e., verified on independent

data) model predictions to the untruncated data.

Figure 4 shows that the C-LIM does have higher H400

forecast skill, measured by local anomaly correlation, at

forecast leads of 28 (Figs. 4a,b) and 150 days (Figs. 4c,d).

In general, the C-LIM’s atmospheric forecast skill

improvement is larger for longer lead times, for all

variables at all levels (not shown). This enhancement

is basically due to the C-LIM’s ability to capture some

aspects of the slow TO evolution. In fact, a second set of

C-LIM forecasts in which TO is held fixed [i.e., TO(t) 5

TO(0)] has much lower 150-day forecast skill (not shown).

The evolution of TO is not so important at the shorter

28-day lead, at which the fixed TO forecasts have about

the same forecast skill as the C-LIM.

The fact that the C-LIM’s skill is only slightly higher

than the A-LIM’s at day 28 does not necessarily imply

that SST impacts are small over this range, because the

A-LIM also implicitly includes linear diagnostic rela-

tionships between xA and TO. The true impact of TO on

the atmospheric day-28 forecasts is demonstrated by

comparing C-LIM forecasts in which only xA is initialized

[i.e., TO(t 5 0) 5 0] with the full C-LIM forecasts. The

resulting H400 forecast skill is significantly degraded

(Figs. 4e,f), suggesting that initial SST conditions impact

western Pacific atmospheric skill even at leads as short as

28 days. On the other hand, for shorter forecast leads

(such as 14 days; not shown), a similar analysis shows that

atmospheric skill over the equatorial Indian and west

Pacific Oceans is considerably less dependent on TO.

Including xA in x improves TO forecast skill but in a

fairly minor way: for example, at 150- (Figs. 5a,c) and

270-day (Figs. 5b,d) forecast lead times. This improve-

ment is not merely due to the higher order of the C-LIM

state vector, because O-LIM forecasts are not improved

further with a higher-order state vector. Neither does

the improved skill appear to be due to initial atmo-

spheric conditions, because even C-LIM forecasts ini-

tialized with xA(t 5 0) 5 0 (Figs. 5e,f) are slightly more

skillful than the O-LIM. One possibility is that small

sampling errors are introduced in the O-LIM operator

when the atmospheric state is not explicitly part of the

state vector. Of course, these skill differences are so

small that they may also be simply due to chance.

FIG. 3. Selected high-pass-filtered fields linearly regressed on the two leading high-pass PCs. TO is indicated

by shading (contour interval of 0.0075 K), H400 is indicated by contours (contour interval of 1.2 3 1026 K s21), and

850-hPa winds (derived from c850 and x850) are indicated by black vectors, with wind speeds below 0.125 m s21

removed for clarity.
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b. Lag covariability in observations and the LIM

A key test of the LIM is to determine how well it

approximates observed lag covariability at lags other

than the lag on which it is trained. This ‘‘tau test’’

(Penland 1989; PS95) can take many forms but one of

the more easily interpretable is to recall that (1) im-

mediately implies that C(t) 5 G(t)C(0), in which

G(t) 5 exp(Lt). That is, the LIM should be able to

reproduce observed lag covariance statistics at all lags.

For example, Newman and Sardeshmukh (2008) showed

that their LIM of extratropical anomalies reproduced

the observed 21-day lag autocovariances of stream-

function and sea level pressure. We employ a similar

test here for diabatic heating and SST.

Figure 6 compares the observed and predicted lag

autocovariances of H400 and TO. The C-LIM’s prediction

of 28-day lag autocovariance of H400 (Figs. 6a,b) is

FIG. 4. Forecast skill of H400 for forecast leads of (left) 28 and (right) 150 days for (a),(b) the C-LIM; (c),(d) the A-LIM; and (e),(f) the

C-LIM with only atmospheric initial conditions. The contour interval is 0.1.

FIG. 5. Forecast skill of TO for forecast leads of (left) 150 and (right) 270 days for (a),(b) the C-LIM; (c),(d) the O-LIM; and (e),(f) the

C-LIM with only SST initial conditions.
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significantly better than that of the A-LIM (not shown)

and compares well with observations. We find that the

small differences between the two fields over the central

and eastern Pacific are largely a consequence of the

reduced variance represented by the H EOF truncation

(Fig. 2), whereas the differences in the western Pacific

are not. Similar comparisons exist at other levels and for

x and c.

The C-LIM’s predicted 150-day lag autocovariance of

TO (Figs. 6c,d) also compares very well with observa-

tions, with relatively minor differences that are well

within sampling uncertainty. However, for the longer

lag of 270 days (Figs. 6e,f), although the C-LIM pre-

diction of the lag autocovariance has about the right

magnitude, it has only a hint of the pronounced local

minimum centered at about 1308W.

c. Power spectra

A complementary test of linearity is to make a more

direct comparison of the C-LIM’s predicted low-

frequency variance with observations by either comput-

ing the power in desired frequency bands directly from

(1) (as in Penland and Ghil 1993), or by making a long

run of (1) and collecting statistics. We followed the latter

approach, integrating (1) for 2400 yr using the method

described in Penland and Matrosova (1994). The white

noise forcing j 5 Sj qjhjrj(t) was specified using inde-

pendent Gaussian white noises rj(t) with unit variance,

in which qj and (hj)
2 are the eigenvectors and eigen-

values, respectively, of the positive-definite noise co-

variance matrix Q 5 hjjTidt determined as a residual in

the fluctuation–dissipation relationship:

dC(0)/dt 5 0 5 LC(0) 1 (0)LT 1 Q, (2)

given the observed C(0) and L. The resulting Q is a le-

gitimate covariance matrix because all of its eigenvalues

were found to be positive. The 2400-yr model time series

was separated into 100 segments of 24-yr each. The ob-

served spectra and the ensemble mean of model spectra

for the three leading PCs of TO and H are shown in Figs. 7

and 8, respectively. The corresponding EOF pattern for

each spectrum is shown in the inset. The gray shading

shows the 95% confidence intervals of these spectra, es-

timated using the 100 model realizations.

The LIM reproduces the main features of the ob-

served spectrum of the leading PC of each variable (top

of Figs. 7, 8; results for c and x are not shown). Obvi-

ously, the mean LIM spectra are much smoother than

observed because of the relatively few degrees of free-

dom in the truncated EOF space. On the other hand, the

irregularity of the observed spectra is at least partly due

to sampling, as indicated by the confidence intervals

that show how much variation in the spectra could occur

simply from different realizations.

For the higher-order PCs, the LIM reproduces the

intraseasonal peak centered at a period of about 50 days

(Fig. 8), but, on longer time scales, the LIM appears to

underestimate the period of a quasi-decadal spectral

peak for both the atmospheric and TO PCs. Comparing

the top panel to the bottom two panels in Fig. 7 also

suggests that the difference between the observed and

LIM-predicted 270-day lag covariance (Figs. 6e,f) is

due to discrepancies in the slow evolution of the higher-

order TO/PCs but not in the time series of the main

ENSO pattern (i.e., TO/PC1) itself. Of course, given the

FIG. 6. (left) Observed and (right) LIM lag covariance for (a),(b) 28-day lag covariance of H400 (contour interval of 2.5 3 10211 K2 s22);

(c),(d) 150-day lag covariance of TO (contour interval of 0.125 K2); and (e),(f) 270-day lag covariance of TO (contour interval of 0.125 K2).
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FIG. 7. Power spectra for the three leading SST (TO) PCs (red lines) compared to that predicted by the LIM (blue

lines): (top) PC1, (middle) PC2, and (bottom) PC3. Gray shading represents the 95% confidence interval determined

from a 2400-yr run of the LIM (see text for further details). The green lines indicate spectra generated by the uncoupled

version of the LIM (i.e., LOA 5 LAO 5 0). In these log(frequency) vs power 3 angular frequency (v) plots, the area under

any portion of the curve is equal to the variance within that frequency band. Note that displaying power 3 frequency

slightly shifts the power spectral density peak centered at a period of 4.5 yr to a variance peak centered at a period of

3.5 yr. Insets show the corresponding EOF and the variance explained by each pattern.
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FIG. 8. As in Fig. 7, but for the three leading diabatic heating (H) PCs. In addition, the dashed lines represent the

spectra of the observed heating PCs projected onto the subset of either the coupled (yellow) or internal (pink) eigen-

modes of the full operator.
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short data record, there is considerable uncertainty in

the observational spectra on these longest time scales

as well.

4. Effects of air–sea coupling

a. Decoupling the linear dynamical operator

The effects of coupling between the atmosphere and

ocean may be investigated in a framework in which (1)

is rewritten as

d

dt

TO

xA

� �
5

LOO LOA

LAO LAA

� �
TO

xA

� �
1

jO

jA

� �
. (3)

Note that LAA is distinct from the linear operator ob-

tained from the A-LIM of xA alone. Recall from the

discussion of the A-LIM’s forecast skill (Fig. 4) that it

implicitly includes linear diagnostic relationships be-

tween xA and TO. By explicitly separating out the effects

of TO on xA and vice versa, (3) enables us to identify

LAA more cleanly with the ‘‘internal’’ (i.e., uncoupled)

atmospheric dynamics. This is also the case when com-

paring LOO to the O-LIM. Of course, LAA and LOO may

each implicitly retain the influence of variables not in-

cluded in x, and, to the extent that both terms are re-

lated to the same unspecified variables, they may not be

entirely independent.

We define a new ‘‘uncoupled’’ operator Lunc, in which

LAO 5 LOA 5 0, resulting in the two independent dy-

namical systems:

dxA

dt
5 LAATA 1 jA and (4)

dTO

dt
5 LOOTO 1 jO. (5)

The atmospheric and SST noises are uncorrelated with

each other but are otherwise unchanged from the full

LIM calculation above. We made a second 2400-yr run

using this uncoupled model. The resulting spectra

(green lines in Figs. 7, 8) make clear that without cou-

pling TO/PC1 variability is very weak and shifts to a

shorter, 2-yr period; the impact of coupling is greatest

for this PC. Overall, uncoupling reduces total TO vari-

ance by a little over two-thirds in the Pacific and by

roughly a third in the Atlantic (not shown). In addition,

the meridional width of the region of large SST varia-

bility is somewhat reduced in the uncoupled run (not

shown). Unsurprisingly, interannual atmospheric vari-

ability is virtually eliminated (Fig. 8). On the other

hand, intraseasonal atmospheric variability is mostly

unchanged; there is essentially no difference between

the full and uncoupled LIM atmospheric PC spectra for

periods ,;50 days, with ;10% reduction for longer-

period variability over the Indian Ocean.

b. Coupled and nearly uncoupled subspaces of L

We next show how the eigenmodes of L [also some-

times called principal oscillation patterns (POPs);

Hasselmann 1988; von Storch et al. 1988; Penland

1989]—obtained from Luj 5 ujvj, in which uj and vj are

the eigenmodes and the corresponding complex eigen-

values, respectively—naturally form two distinct sub-

spaces that can be used to distinguish between coupled

and uncoupled dynamics in this system. Figure 9a shows

the eigenvalues, plotted as frequency, Im(vj/2p), versus

e-folding time (eft), 2Re(vj)
21. The eigenmodes fall

into two distinct classes: one class has large amplitude in

both TO and xA (‘‘coupled’’ eigenmodes u
coup
j ) and the

other class has large amplitude in xA but small ampli-

tude in TO (nearly uncoupled or ‘‘internal atmospheric’’

eigenmodes uint
j ). Note from Fig. 9a that u

coup
j also have

relatively low frequency and large efts, whereas uint
j

have relatively high frequency and small efts. Also

shown in Fig. 9a are the eigenvalues of Lunc, whose ei-

genmodes also fall into two distinct classes, but now

by construction: one class has amplitude in TO but zero

amplitude in xA (‘‘SST only’’ modes) and the other class

has amplitude in xA but zero amplitude in TO (‘‘at-

mosphere only’’ modes). We find a strikingly close

correspondence between uint
j and the atmosphere-

only eigenmodes of Lunc, not only because most of the

corresponding eigenvalues have such minor differences

but also because the eigenmodes themselves are

mostly so similar. This latter point is clear from Fig. 9b,

which shows the maximum pattern correlations (Borges

and Sardeshmukh 1995) between the closest corre-

sponding eigenmodes of L and Lunc. Only the lowest

frequency uint
j has structures with even minor

differences from its uncoupled atmosphere-only coun-

terparts. On the other hand, relatively little correspon-

dence exists between the u
coup
j and the SST-only

eigenmodes of Lunc.

Figure 9 strongly suggests that although air–sea cou-

pling greatly modifies the slow SST eigenmode subspace,

it only minimally modifies the faster internal atmo-

spheric eigenmode subspace. For example, a comparison

of the two leading propagating eigenmodes of L and

Lunc (Fig. 10) shows that the least damped eigenmode of

L has an ENSO-like pattern and period entirely absent

in the uncoupled SST-only eigenmodes. In contrast, the

least damped internal atmospheric eigenmode (Fig. 11),

with period and pattern characteristic of an MJO, is

virtually identical to the least damped atmosphere-only

eigenmode. For the few internal atmospheric eigen-

modes that are altered by coupling, the differences
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between eigenmode structures are fairly subtle and,

because they are strongly damped, even relatively

large changes in period have a minor impact on their

evolution.

Because the subspace defined by the internal atmo-

spheric eigenmodes of the full operator corresponds

so well to the subspace defined by the atmosphere-only

eigenmodes of the uncoupled operator, it likely repre-

sents that portion of the atmospheric dynamics only

weakly coupled (if at all) to SST. This suggests that

coupled and internal atmospheric variability can be

naturally separated by dividing the state vector x into

two parts, x 5 xcoup 1 xint, where

xcoup 5 �
j

u
coup
j a

coup
j (t) and

xint 5 �
j

uint
j aint

j (t),

an approach analogous to the nonnormal filter used

by Penland and Matrosova (2006) to isolate ENSO.

The time series aint
j ðtÞ and a

coup
j ðtÞ are determined by

taking the inner product of x(t) with the corresponding

(biorthogonal) adjoint vectors. Note that L is not self-

adjoint and these two subspaces are not orthogonal.

That is, the total variance of x is not the sum of the

variances of xcoup and xint. However, in the absence of

forcing (including stochastic forcing), xcoup and xint do

not interact; they evolve independently of each other.

The spectra of the leading H PCs projected in these

two subspaces, Hcoup and Hint, are shown in Fig. 8. For

H/PC1, the separation is particularly distinct: Hcoup/PC1

FIG. 9. Comparison of the full and uncoupled operators. (a) Frequency vs eft of each ei-

genvalue from the full (circle) and uncoupled (cross) operators, in which the eigenvalues

corresponding to the coupled and SST-only modes are blue and the internal atmosphere and

atmosphere-only modes are red. (b) Maximum pattern correlation between the corresponding

eigenmodes of the full and uncoupled operators, plotted at the frequencies of both the full

(circle) and uncoupled (cross) operators.
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approximates the spectrum of red noise with about an

8-month correlation scale and represents almost all the

H/PC1 interannual variability, whereas Hint/PC1 ap-

proximates the spectrum of red noise with about an

8-day correlation scale and represents almost all the

H/PC1 intraseasonal variability. Although the spectral

tails of the two processes overlap for variability within

the intra-annual band (periods of several months),

separation into these coupled and internal atmospheric

subspaces also acts, in effect, as a bandpass filter; that is,

the sum of the Hcoup/PC1 spectrum and the Hint/PC1

spectrum roughly equals the total H/PC1 spectrum. A

similar result exists for H/PC3, although its interannual

variability is relatively much weaker.

However, for H/PC2 in the intra-annual band, the two

subspaces have substantial spectral overlap but their

variances are not additive. This means that H/PC2 vari-

ability in this frequency band projects on nonorthogonal

eigenmodes (i.e., similar spatial structures but very dif-

ferent eigenvalues) in both subspaces. As a conse-

quence, a bandpass filter of H/PC2 would confuse

variability associated with faster, largely uncoupled

dynamics with variability associated with slower, cou-

pled dynamics.

5. Impact of coupling on the evolution of the MJO
and ENSO

Having demonstrated how coupling affects the over-

all statistics of tropical variability, we next examine how

coupling more specifically affects MJO and ENSO ev-

olution by integrating (1) forward from some suitable

initial conditions. The evolution discussed below is en-

tirely deterministic; that is, unlike the model runs dis-

cussed in the previous sections, no stochastic noise

forcing is included in these integrations.

a. Evolution of the MJO

Figure 12 shows an example of MJO evolution in the

C-LIM, initialized with a state obtained by regression

on high-pass PC2 (Fig. 12a; the same as Fig. 3b, apart

from relatively minor differences resulting from the EOF

truncation). Note that although this ‘‘1-sigma event’’

initial condition is determined from the high-pass da-

taset, its subsequent evolution is based upon the full

C-LIM constructed from the 7-day running means.

After about two weeks (Fig. 12b), the state vector

evolves into a pattern very similar to EOF1 of the high-

pass data (cf. Fig. 3a). [Conversely, a C-LIM integration

FIG. 10. SST (TO) portion of the two leading empirical propagating eigenmodes from the full (L) and uncoupled (Lunc) operators. The

(a) cos and (b) sin phases of the leading propagating (and least damped overall) eigenmode of L. The (c) cos and (d) sin phases of the

leading propagating (and second least damped overall) eigenmode of Lunc. The contour interval is the same in all panels but is arbitrary.

The overall sign of (a)–(d) is also arbitrary; within each, values of one sign are depicted with gray shading and thick contours and values of

the other sign are depicted with thin contours.

FIG. 11. As in Fig. 10, but for the 400-hPa diabatic heating (H) portion of the ‘‘MJO’’ eigenmode, which is the leading (least damped)

internal atmospheric eigenmode of L and the leading atmosphere-only eigenmode of Lunc.
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FIG. 12. Evolution of MJO initial condition by the C-LIM dynamical operator L and by the uncoupled version of the C-LIM (Lunc). (a)

Initial TO and H400 state, obtained from the regression of the high-pass data against high-pass PC1 (Fig. 3a) and (b) the full evolved state

13 days later. Shading indicates TO (contour interval of 0.0075 K), contours indicate H400 (contour interval of 1.2 3 1026 K s21), and black

vectors indicate 850-hPa winds (derived from c850 and x850), with wind speeds below 0.125 m s21 removed for clarity. (c) Hovmöller

diagram of the full C-LIM evolution of TO (shading; contour interval of 0.0075 K) and H400 (contours; contour interval of 1.2 3 1026

K s21) averaged between 28S and 28N. (d) Hovmöller diagram of the full C-LIM evolution of x850 (shading; contour interval of 1.75 3 106

m2 s21) and c850 (contours; contour interval of 1.75 3 106 m2 s21) at 88N. (e),(f) As in (c),(d), but for the uncoupled C-LIM simulation

starting with the same initial conditions. Note that for this linear model, the sign in all panels is arbitrary but, to match the direction of the

wind vectors, the black contours and yellow/red shading are positive and the red contours and blue shading are negative.
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initialized with fields regressed on high-pass PC1

evolves into high-pass EOF2 (not shown).] Hovmöller

diagrams of H400 and TO averaged between 28S–28N

(Fig. 12c) and c850 and x850 at 88N (Fig. 12d) show

continuous eastward phase propagation with a peak-

to-peak period of roughly 50 days. Also, the vertical

structure of H is ‘‘top heavy’’ and tilted westward with

height (not shown), with maxima about twice as strong

and about 78 westward at 400 hPa compared to 700 hPa,

which are both in agreement with Lin et al. (2004).

These effects are weaker for Maritime Continent anom-

alies. The C-LIM also captures the not-entirely smooth

propagation of the anomaly, including the ‘‘jump’’ of

convection across the Maritime Continent (e.g., Knut-

son and Weickmann 1987). Over one half cycle, peak

amplitude decays by about two-thirds, about the decay

rate of the leading internal atmospheric eigenmode

(Fig. 11), reflecting the loss of MJO predictability in the

presence of noise. As the atmospheric anomaly moves

near the date line, it induces an equatorial SST anom-

aly (Fig. 12b) propagating eastward at about 2.5 m s21

(Fig. 12c), slower than the MJO but consistent with

observed mid-Pacific oceanic Kelvin waves (e.g., Roundy

and Kiladis 2006). Throughout the tropics, TO anomalies

driven by the MJO in the C-LIM are fairly weak, on

the order of 0.1 K, but are consistent in both pattern

and amplitude with the regression results (Fig. 3) as

well as with previous studies (e.g., Shinoda et al. 1998;

Woolnough et al. 2000; Pegion and Kirtman 2008;

Waliser et al. 2009).

When the same initial conditions are integrated for-

ward using the uncoupled operator Lunc (Figs. 12e,f), the

MJO evolution is largely unchanged, as might have

been anticipated from section 4. Moreover, the MJO

evolution occurs almost entirely within the xint subspace

(not shown). Of special note is that even the uncoupled

MJO propagates realistically through the western Pa-

cific, in stark contrast to most GCM simulations.

Removing all interactions between H and other var-

iables impacts MJO evolution much more significantly.

We constructed a new operator (Ladiabatic) in which c

and x still interact with each other and with TO but

internal atmospheric dynamics are otherwise adiabatic.

The evolving anomaly (not shown) retains many MJO

characteristics but propagates about one-third faster

across the tropical Indo-Pacific and decays by about

95% over one half cycle. Interestingly, in the vicinity of

South America the propagation speed is unaltered,

consistent with primarily adiabatic dynamics in this re-

gion and/or the continued presence in the modified

operator of implicit effects from some variable(s) not

included in x (e.g., interactions with land and/or the

extratropics).

b. Optimal evolution of ENSO in the LIM

PS95 showed that the ‘‘optimal’’ initial condition for

maximum amplification of tropical SST anomalies, ob-

tained via a singular vector decomposition (SVD) of the

system propagator G(t) under the domain-integrated

(L2) norm of TO (e.g., Farrell 1988; PS95; WNS), is also

the most relevant initial condition for ENSO develop-

ment. The SVD analysis yields a dominant pair e1,f1

of normalized singular vectors and maximum singular

value l1, such that the initial condition f1 at time t leads

to the anomaly Gf1 5 l1e1 at later time t 1 t. The

maximum possible anomaly growth factor during the

time interval t, l1
2(t), is sometimes called the maximum

amplification (MA) curve (PS95), which peaks here at

tmax ’ 150 days (not shown).

We initialized a LIM run with the optimal initial

condition for growth over a t 5 tmax interval, shown

in Fig. 13a; note its virtually zero initial atmospheric

anomaly. The choice of t is not too important because,

for any t . 28 days, the initial condition (and subse-

quent evolution over the next 210 days) is almost in-

dependent of t. Our singular vector analysis produces

results broadly similar to earlier studies using 3-month

running mean data since 1950 (see, e.g., PS95), with two

main exceptions: our tmax is shorter than in other

studies, which found tmax ’ 8 months, and the optimal

SST anomaly is of the same sign all along the equator,

whereas other studies found a weak opposite-sign equa-

torial anomaly at about 1408W. The former difference

appears because of our use of weekly, instead of sea-

sonal, data. The latter difference occurs for both weekly

and seasonal LIMs, however, and is likely a consequence

of our post-1982 data record.

Tropical evolution over the next 210 days, shown in

Figs. 13b–e, can be roughly divided into three phases:

about two months of transient development, then about

three months of stationary development, followed fi-

nally by the anomaly’s weakening. The first phase starts

with a low-level equatorial westerly wind anomaly

forming rapidly at the western edge (;1608E) of the

positive SST anomaly oriented northeastward from the

equator (Fig. 13a), reminiscent of the surface winds–SST

pattern of the Pacific meridional mode (MM; Vimont

et al. 2003; Chang et al. 2007). A positive diabatic heating

anomaly then also forms north of the equator (Fig. 13b),

with a negative anomaly over Indonesia. While the

MM SST anomaly weakens, the equatorial TO anomaly

strengthens and this atmospheric anomaly slowly shifts

eastward and southward onto the equator. Most of the

amplification in this phase appears related to the MM

SST anomaly and the opposite-signed SST anomaly to

its west, a point confirmed by repeating the integration
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FIG. 13. Evolution of the optimal initial condition for amplification of SST anomalies over a 150-day interval. (a) Initial TO and H400

state and the evolved states (b) 15 and (c) 150 days later. Shading indicates TO (contour interval of 0.075 K), contours indicate H400

(contour interval of 1.2 3 1026 K s21), and black vectors indicate 850-hPa winds (derived from c850 and x850), with wind speeds below

0.125 m s21 removed for clarity. In (a), all wind (heating) anomalies fall below the minimum vector (contour) value, so they do not

appear. (d) Hovmöller diagram of the C-LIM evolution of TO (shading; contour interval of 0.075 K) and H400 (contours; contour interval

of 1.2 3 1026 K s21) averaged between 28S and 28N. (e) Hovmöller diagram of the C-LIM evolution of x850 (shading; contour interval of

1.75 3 106 m2 s21) and c850 (contours; contour interval of 1.75 3 106 m2 s21) at 88N. (f) As in (d), but for the coupled mode component

xcoup only. Note that for this linear model, the sign is arbitrary but, to match the direction of the wind vectors, the black contours and

yellow/red shading are positive and the red contours and blue shading are negative. Amplitudes are also arbitrary but are scaled to have

representative values; note that contour intervals for the atmospheric variables are as in Fig. 12, but a factor of 10 larger for TO.
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but initializing with only the western Pacific–Indian

Ocean SST anomaly (not shown). Then, during the

second phase, quasi-stationary atmospheric and SST

anomalies centered on the equator continue to amplify,

apart from some minor variations due to the continuing

eastward propagation of the steadily decaying MJO.

Finally, the SST anomaly decays, although the heating

anomaly near the date line does not reach its peak for

another few weeks, consistent with observations.

The picture is slightly complicated by the simulta-

neous excitation of an eastward-propagating MJO (cf.

Figs. 13d,e to 12c,d) by the initial condition. However,

this MJO only minimally contributes to SST anomaly

amplification, as can be seen by the evolution of the

coupled modes alone [i.e., xcoup(t)] shown in Fig. 13f.

This is entirely consistent with the existence of the

nonorthogonal coupled and uncoupled subspaces dem-

onstrated earlier. In other words, the same initial con-

dition projects onto structures favorable for both ENSO

and MJO evolution.

6. Summary and conclusions

To investigate the effect of air–sea coupling on the

variability of weekly averaged tropical anomalies, we

have constructed a coupled LIM using the observed

zero lag and 6-day lag covariances of tropical SST and

atmospheric variables. The model predicts the covari-

ances at all other lags and hence also the corresponding

power spectra. The predicted and observed spectra and

lag covariances are generally found to be in agreement,

even at much longer lags, at least up to the time interval

associated with the maximum possible predictable

growth of anomalous SST in the system. Such agree-

ments validate the LIM’s basic premise that the dy-

namics of tropical weekly averages are effectively linear

and stochastically driven and justify our linear diagnosis

of the system.

We find that although anomalous air–sea coupling

greatly increases interannual SST variability and length-

ens the period of ENSO, it has a very small effect on

intraseasonal atmospheric variability. Further analysis of

the linear dynamical operator shows that coupling mini-

mally modifies the fast atmospheric eigenmode subspace

but greatly modifies the slower SST eigenmode subspace

[the latter point echoing theoretical nonlinear modeling

results such as those of Neelin and Jin (1993)]. Moreover,

the sharp distinction between the two subspaces suggests

that scale interactions between ENSO and MJO phe-

nomena are relatively weak. Note that our analysis can-

not rule out the possibility that coupling affects the sto-

chastic forcing; that is, coupling effects on time scales

much shorter than a week, including diurnal effects, may

still exist.

The predictable evolution of ENSO apparently does

not involve MJO forcing. This does not mean that the

MJO has no effect on ENSO, because the optimal initial

structure for ENSO could be excited by a series of

MJO-like events similar to Fig. 12 as suggested, for

example, by Zavala-Garay et al. (2005). Additionally,

extratropical noise could excite the meridional mode

portion of the optimal structure, consistent with the

‘‘seasonal footprinting’’ mechanism (Vimont et al. 2003).

However, because in either case these individual noise

events would be largely unpredictable, the C-LIM sug-

gests that not until the SST anomaly pattern approxi-

mates the pattern shown in Fig. 13a does ENSO begin to

develop in a largely predictable manner.

Our study is clearly limited by the relatively short

available data record of weekly SST. This has likely

affected our estimate of the optimal structure and per-

haps also our predicted lag covariances at very long lags

(e.g., 270 days) as well as our spectral estimates for the

higher-order PCs at ultralow frequencies. These are

typically better simulated in O-LIMs constructed from

much longer datasets, albeit from seasonal or yearly

averages. Another obvious problem is that the ‘‘ocean’’

part of our state vector is SST alone. However, while

including 208C isotherm depth in a LIM constructed

from seasonal means (M. Newman et al. 2009, unpub-

lished manuscript) notably improves both SST forecasts

and predicted lag covariances over lags greater than

about nine months, its impact on shorter lags is small. It

has also been suggested that the relationship between

the MJO and oceanic Kelvin waves may appear more

clearly in other ocean variables such as dynamic height

(Roundy and Kiladis 2006), so our version of the C-LIM

may be missing some dynamics on much shorter time

scales as well. To completely diagnose ocean–atmos-

phere coupling, explicit subsurface information appears

essential, but unfortunately the availability of such data

on weekly time scales is currently limited. It is, of

course, quite possible that some LIM deficiencies are

not only due to data limitations but also to some non-

linear aspect of the coupled dynamics not treatable as

linear terms plus stochastic noise or to nonstationarity

in the data (e.g., a trend in the warm pool SSTs). Ad-

ditionally, the impact of the EOF truncation may result

in an underestimation of linear coupled processes for

infrequent and/or high-amplitude events. Still, keeping

in mind that the LIM captures the observed spectral

peaks better than many coupled GCMS, these defi-

ciencies appear to represent a relatively small part of

the variance and would require a correspondingly small

modification of our conclusions.

Another limitation may be our assumption that L is

independent of season. For three-month running mean
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SST anomalies, PS95 suggested that both the observed

seasonality of SST variability and the tendency of

ENSO to be phase locked to the seasonal cycle might be

explained with a fixed L but seasonal variations of both

Q and the optimal structure (see also Penland 1996; for

an opposing view, see Thompson and Battisti 2000). We

likewise find that the initial conditions correspond best

to the optimal pattern during spring (not shown), a re-

sult also consistent with the seasonal footprinting mech-

anism (Vimont et al. 2003; Chang et al. 2007). However,

perhaps on weekly time scales the seasonality of L mat-

ters to the coupled climate system, given fundamental

differences between summer and winter monsoons and

the apparent seasonal dependence of MJO–ENSO in-

teractions (Hendon et al. 2007). We attempted to ad-

dress this issue by constructing separate C-LIMs for the

extended winter (1 November–31 March) and extended

summer (1 April 1–31 October) seasons. These sea-

sonally adjusted L operators gave modestly better re-

sults than the fixed L operator on shorter time scales.

However, perhaps due to the limited length of the da-

taset, the separate winter and summer C-LIMs

were much less accurate on longer ENSO time scales.

We suspect that seasonality is important but to con-

struct a seasonally varying LIM generally superior to

the year-round LIM requires either more training data

or another approach to computing a cyclo-stationary

LIM (e.g., Ortiz-Bevı́a 1997), both of which we defer

to future research. We stress that none of the season-

ality differences we found materially altered our

key conclusions concerning the relative importance

of coupling at interannual versus intraseasonal time

scales.

Our results support the view that the MJO is fun-

damentally an atmospheric phenomenon with strong

coupling between the circulation and deep convection

but minimal coupling to the underlying SST anomalies.

The fact that diabatic heating has a much larger impact

on the MJO in the C-LIM than air–sea coupling sug-

gests that improving MJO simulations in AGCMs may

depend much more on improving simulation of clouds

and convective processes (e.g., Maloney and Hartmann

2001; Zhang and Mu 2005; Lin et al. 2004, 2006; Vitart

et al. 2007; Mu and Zhang 2008) than on merely cou-

pling an AGCM to an OGCM or some other interactive

ocean model.

Why, then, do many (although not all) studies report

improved MJO simulations in a coupled GCM than in

the corresponding AGCM? One possibility is that such

a result says more about the models than about nature.

Perhaps improved MJO simulations in coupled GCMs

result when one model error (e.g., incorrect atmo-

spheric physics) is compensated for by a second error

(e.g., incorrect coupling based upon incorrect local air–

sea relationships; e.g., Wu et al. 2006; Pegion and

Kirtman 2008). Moreover, introducing coupling gener-

ally modifies the model climatology (e.g., Inness and

Slingo 2003; Inness et al. 2003; Sperber et al. 2005;

Zhang et al. 2006; Pegion and Kirtman 2008), poten-

tially a more important factor than feedback from in-

traseasonal SST anomalies, especially in the far west

Pacific where many models have mean surface easterlies

instead of westerlies. Whether coupling likewise mod-

ifies the mean climate drift of model forecasts is also

unclear. Note that our study does not address how

coupling impacts the mean climate because, by con-

struction, there is no error in the C-LIM mean climate

and no climate drift for forecasts at any lead time. Fi-

nally, it seems likely that coupling is a more complex

process than is commonly assumed in simpler theoreti-

cal studies. Certainly, the SST pattern associated with

the MJO (e.g., Fig. 12a) is not simply a phase-shifted

version of the atmospheric anomaly, so changes in

surface fluxes due to remote SST anomalies and their

influence on surface winds may be different from—

and even partly oppose—changes due to local SST

anomalies.

In this study, rather than distinguishing a priori be-

tween interannual and intraseasonal variability through

filtering in prespecified frequency bands, we use the

dynamical system operator L to make this distinction a

posteriori through its coupled and internal atmospheric

subspaces. This dynamically based separation suggests

that the more common frequency filter approach may

mix different dynamical processes, represented in L by

different nonnormal eigenmodes. Although standard

definitions of the MJO cleanly remove the mature

ENSO phase (i.e., H/EOF1; Fig. 8), they may still retain

the high-frequency tail of interannual variability (e.g.,

periods under about one year for H/EOF2) driven by

coupled dynamics and, consequently, also retain a cer-

tain ambiguity when applied to both observational and

model diagnosis. For example, introducing coupling in a

GCM might improve forecasts of some MJO metric

because of an improvement in the dynamics of ENSO,

such as during potential onset phases, and not neces-

sarily the dynamics of the MJO.

Finally, our uncoupled and adiabatic operators may

be regarded as extreme examples of erroneous coupling

in climate models. In the C-LIM, removing air–sea

coupling leads to an ENSO whose period is too short

and whose maximum amplitude is too far west, and

removing coupling between the atmospheric circulation

and diabatic heating results in an MJO that propagates

and decays too rapidly. Both of these are common

CGCM failings, suggesting that the approach we have
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used in this paper might also be useful for diagnosing

errors in comprehensive coupled climate models.
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