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Abstract

Ocean forecasting is now widely recognized as an important approach to improve the resil-

ience of marine ecosystems, coastal communities, and economies to climate variability and

change. In particular, regionally tailored forecasts may serve as the foundation for a wide range

of applications to facilitate proactive decision making. Here, we describe and assess ~30 years

of retrospective seasonal (1–12 month) forecasts for the California Current System, produced

by forcing a regional ocean model with output from a global forecast system. Considerable fore-

cast skill is evident for surface and bottom temperatures, sea surface height, and upper ocean

stratification. In contrast, mixed layer depth, surface wind stress, and surface currents exhibit

little predictability. Ocean conditions tend to be more predictable in the first half of the year,

owing to greater persistence for forecasts initialized in winter and dynamical forecast skill con-

sistent with winter/spring influence of the El Niño–Southern Oscillation (ENSO) for forecasts ini-

tialized in summer. Forecast skill above persistence appears to come through the ocean more

than through the atmosphere. We also test the sensitivity of forecast performance to downscal-

ing method; bias correcting global model output before running the regional model greatly

reduces bias in the downscaled forecasts, but only marginally improves prediction of interan-

nual variability. We then tailor the physical forecast evaluation to a suite of potential ecological

applications, including species distribution and recruitment, bycatch and ship-strike risk, and

indicators of ecosystem change. This evaluation serves as a template for identifying promising

ecological forecasts based on the physical parameters that underlie them. Finally, we discuss

suggestions for developing operational forecast products, including methodological consider-

ations for downscaling as well as the respective roles of regional and global forecasts.
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1. Introduction

The need for proactive ocean decision making is now well established, as the impacts of cli-

mate variability–especially extreme events–highlight the limitations of static management

strategies. In the U.S., for example, myriad ecological, social, and economic impacts of ocean

variability over the past decade have motivated a growing push to incorporate forward-looking

environmental information in the management of coastal communities, fisheries, and marine

protected areas [1, 2]. To that end, seasonal (1–12 month) ocean forecasts have an important

role to play when managing marine resources in a changing climate [3], filling a critical gap

between real-time information and long-term outlooks. For example, seasonal forecasts have

the potential to inform decisions on fish catch limits, timing of fishery closures, and allocation

of monitoring resources [4], and past work has highlighted both the promise and challenges of

marine ecosystem prediction on seasonal timescales [4–6].

A logical approach to creating marine ecosystem forecasts is to start from skillful physical

climate forecasts, which are then connected by statistical or mechanistic models to ecological

targets of interest. In this construction, a wide variety of ecological models developed for retro-

spective or near-real-time application could be readily transitioned to forecast mode (e.g., Sec-

tion 3.4). The physical predictions can be global or regional in scale, but while global climate

forecasts are widely available, oceanographic output from these models is often limited to few

surface variables, predominantly sea surface temperature (SST) [7]. Furthermore, there is a

desire for predictions of fine-scale features and processes that are relevant to marine resource

management but are not resolved by global forecast systems. Dynamical downscaling allows

for regionally tailored models with relatively high resolution, and the downscaling process can

also be used to correct for regional biases in global models. As a result, dynamical downscaling

has been widely used to produce regional ocean projections under climate change [8]. How-

ever, examples of dynamically downscaled seasonal forecasts and assessments of their forecast

skill are less common [though see 9, 10].

One region for which downscaled seasonal forecasts hold interest and potential is the Cali-

fornia Current System (CCS), running along the west coast of North America. As one of the

world’s major eastern boundary upwelling systems, the CCS supports a highly productive

marine biome and human activities including socio-economically important fisheries and

tourism [11]. The physical, chemical, and biological environment of the CCS exhibits consid-

erable variability on subseasonal, seasonal, and interannual timescales [12], with notable eco-

logical disruptions arising from climate anomalies including delayed upwelling [13], ENSO

events [14 and references therein], and other marine heatwaves [15]. Importantly, largely due

to the influence of ENSO, the CCS is one of the more predictable areas of the ocean, especially

among extratropical regions [16, 17].

Here, we present a ~30-year retrospective skill assessment for the first downscaled sea-

sonal forecasts spanning the U.S. portion of the California Current System (CCS) and

extending ~1000 km offshore. In doing so, our aims are to (i) evaluate forecast skill for

coastal and offshore conditions in the CCS, including for metrics of vertical water column

structure that have rarely (if ever) been evaluated in ocean predictions, (ii) demonstrate a

framework for using physical forecast skill assessment as a key step toward identifying eco-

logical forecasts that are poised to be skillful, and (iii) provide insight for developing opera-

tional forecast products, including methodological considerations and the role of regional

vs. global forecasts.
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2. Methods

2.1. Forecast system

2.1.1. Forecast system overview. The regional ocean forecast system employed here con-

sists of a regional ocean model (Fig 1) forced by output from a global climate forecast system.

In order to thoroughly evaluate the performance of the system, we have run a set of retrospec-

tive forecasts (reforecasts) spanning approximately three decades (1982–2010). Details of the

forecast system, including the global climate forecasts, the regional ocean model, and the

downscaling procedure, are described below.

2.1.2. Global climate forecast system. Surface forcing and lateral ocean boundary condi-

tions for the downscaled forecasts were derived from the fourth version of the Canadian Cen-

ter for Climate Modeling Analysis’s coupled climate model (hereafter CanCM4 [18]).

Forecasts were initialized every month, with each forecast extending 12 months into the future

(i.e., with lead times up to 12 months). To capture uncertainty due to internal climate variabil-

ity, each forecast includes 10 ensemble members initialized from separate data assimilation

runs such that their initial conditions are slightly different [18]. CanCM4 output is available

for all atmospheric and oceanic variables needed to force the regional ocean model over the

1982–2010 period; surface atmospheric conditions and radiative forcing are available at daily

frequency, while three-dimensional ocean boundary conditions are available as monthly aver-

ages. CanCM4 is one of the models in the North American Multimodel Ensemble (NMME

[19]), and has been shown to exhibit considerable forecast skill for SST in the CCS [20]. Other

global climate forecast systems exhibit similar patterns in skill to those of CanCM4 [17, 20],

Fig 1. Sample forecast output. (left) California Current System ROMS domain, with color indicating mean SST for the 1982–2010 period of the study. Black

contours indicate 75 and 300 km from shore, as well as divisions between north, central, and south regions. (right) Output from downscaled forecasts for (top)

SST and (bottom) SST anomaly averaged within the 75 km coastal band outlined on the map. Forecast conditions are shown for two sets of downscaled runs,

which differ in whether the forcing derived from the CanCM4 global models was bias corrected (CanCM4-ROMS-BC) or not (CanCM4-ROMS) prior to

downscaling. The forecast initialization (colored circles), ensemble mean (colored lines) and ensemble spread (colored shading) are shown for each forecast,

with observed conditions in black. For clarity, only forecasts initialized in January for 2000–2009 are shown.

https://doi.org/10.1371/journal.pclm.0000245.g001
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and for seasonal forecasts the intramodel spread is much larger than the intermodel spread

[e.g., 21], so we ran multiple ensemble members from CanCM4 rather than running members

from multiple models.

2.1.3. Regional ocean model. Forecasts were dynamically downscaled using a CCS con-

figuration of the Regional Ocean Modeling System (ROMS), covering the U.S. west coast and

extending ~1000 km offshore (30–48˚N, 134–115.5˚W). Model resolution is 0.1 degrees (~7–

11 km) in the horizontal, with 42 terrain-following levels in the vertical [22]. This model and

its variants have been used extensively to evaluate the CCS physical and biogeochemical ocean

state [23–25], its variability and response to climate forcing [26–28], and its influence on

marine biological communities ranging from phytoplankton to top predators [29–32].

2.1.4. Regional ocean model forcing and initialization. Due to computational con-

straints, the full suite of global climate forecasts (12 forecasts per year, 10 ensemble members)

was reduced to a smaller subset for dynamical downscaling. To capture seasonal differences in

predictability, we downscaled forecasts initialized in January and July, and three ensemble

members were downscaled for each forecast. A three-member ensemble was chosen to balance

the computational and storage costs of running additional members with the diminishing

returns of skill improvement as the ensemble gets larger [6]. For each forecast, we used ensem-

ble members 2, 8, and 10 in the CanCM4 output. When treated as independent forecasts these

three ensemble members exhibit relatively low, moderate, and high retrospective SST forecast

skill in the CCS, giving us forecasts that are representative of what should be expected from a

typical 3-member ensemble (S1 Fig).

ROMS forcing fields were derived from the CanCM4 global forecasts in two ways: one in

which CanCM4 fields were interpolated directly to the ROMS grid (denoted CanCM4-

ROMS), and one in which the CanCM4 fields were bias corrected before being used as forcing

for ROMS (denoted CanCM4-ROMS-BC). In the latter case, the bias-corrected forcing was

constructed by (i) subtracting the initialization- and lead time-dependent climatology from

CanCM4 forecast fields to obtain CanCM4 forecast anomalies [as in 16], and then (ii) adding

the low-resolution CanCM4 anomalies to high resolution 1982–2010 climatologies of the sur-

face and ocean boundary conditions, obtained from the European Centre for Medium-Range

Weather Forecasts (ECMWF) version 5 atmospheric reanalysis (ERA5 [33]) and the Simple

Ocean Data Assimilation version 2.1.6 (SODA [34]), respectively. For this second step, surface

CanCM4 anomalies from the ocean point closest to land were extended over land (i.e., the

land was flooded) to avoid artifacts associated with the land-sea interface during interpolation,

and then bicubic interpolation was used to put CanCM4 anomalies on the higher resolution

grid.

Initialization was also handled differently between the two forecast configurations. In

CanCM4-ROMS, the ocean initial conditions were interpolated directly from CanCM4 out-

put. Since CanCM4 ocean fields were provided as monthly averages, the initial condition was

obtained by averaging the zero-lead forecasts for the two months surrounding the initialization

date. For example, the initial condition for the Jan. 1, 2000 forecast was obtained by averaging

the December conditions from the December 1999 forecast and the January conditions from

the January 2000 forecast (note that in a true forecast mode, the global model should supply

initial conditions from the beginning of the month). In CanCM4-ROMS-BC, the initial condi-

tion was obtained from the UC Santa Cruz CCS ocean reanalysis ([35]; Section 2.2.2). Using

the historical reanalysis to initialize retrospective forecasts simulates an approach in which

operational forecasts are initialized from a near-real-time regional analysis available for the

CCS (oceanmodeling.ucsc.edu/ccsnrt, version 2016a).

Given the different configurations of their initialization and forcing, CanCM4-ROMS and

CanCM4-ROMS-BC represent opposite ends of the spectrum for regional tailoring of the
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downscaled forecasts; CanCM4-ROMS is forced solely by the global forecast output while

CanCM4-ROMS-BC relies on high resolution atmosphere and ocean reanalyses to construct

both the initial condition and the forcing. While we focus on CanCM4-ROMS-BC to quantify

the potential skill of a CCS seasonal forecast system, comparison between the two configura-

tions (Section 3.3) provides insight into the added value of bias-correcting the forcing and

using a near-real-time regional ocean analysis for forecast initialization, both of which are

non-trivial additions to the workflow.

2.2. Skill assessment

2.2.1. Variables assessed. Forecast skill was evaluated for a suite of atmospheric and oce-

anic variables. In the atmosphere, we examined surface wind stress in the eastward and north-

ward directions (sustr and svstr, respectively) as well as wind stress curl (curl). At the ocean

surface, we examined sea surface temperature (SST), sea surface height (SSH), and surface cur-

rents in the eastward and northward directions (su and sv, respectively). The upper ocean

water column structure was characterized by the mixed layer depth (MLD), defined by a den-

sity change corresponding with a 0.8˚C temperature deviation [36], and the buoyancy fre-

quency (BF; a measure of stratification) averaged over the upper 200m. Lastly, bottom

temperature (BT) was included for its importance to benthic species, with a focus on the near-

shore environment where bottom depth is less than ~1000 m. These variables were chosen for

their potential as predictors of variability in the distributions and populations of marine spe-

cies ranging from phytoplankton and krill [37, 38] to fish, sharks, and top predators [30, 39].

Monthly averages of all variables were computed for skill assessment.

2.2.2. Verification data. Forecast skill was evaluated using ocean reanalyses, satellite

observations, and several in situ data sets. The UC Santa Cruz CCS reanalysis (CCSRA [35]) is

based on the same ROMS model domain described in Section 2.1.3, though with different

atmosphere and ocean boundary forcing. This reanalysis spans 1980–2010 and assimilates sat-

ellite SST and SSH data as well as available in situ salinity and temperature data. As a verifica-

tion data set, CCSRA has the advantages of matching the domain and resolution of the

downscaled forecasts and resolving the full water column. Past analyses have shown that sur-

face and water column properties of CCSRA compare favorably to observations from ship-

based surveys, satellites, shore stations, underwater gliders, and Argo floats [35, 40, 41]. A sec-

ond ocean reanalysis, the Global Ocean Reanalysis and Simulations (GLORYS) version 1 was

also used as a separate verification data set. GLORYS has global coverage at 1/12 degree hori-

zontal resolution with 50 vertical levels. GLORYS uses the Nucleus for European Modelling of

the Ocean (NEMO) ocean model with surface forcing from the ECMWF ERA-Interim reanal-

ysis, and is available for 1993–2019. Similar to CCSRA, GLORYS assimilates satellite SST and

SSH observations as well as in situ temperature and salinity, and exhibits high fidelity to inde-

pendent observations in the CCS [41, 42].

Additional SST measurements for verification were taken from version 2.1 of NOAA’s daily

0.25˚ resolution Optimum Interpolation SST product (OISST [43, 44]) as well as shore-based

observations maintained by a network of institutions along the U.S. west coast (https://

shorestations.ucsd.edu). Focusing on locations with comprehensive coverage for the 1982–

2010 forecast verification period, we used data from four locations along the California coast:

the Farallon Islands (37.7˚N), Pacific Grove (36.6˚N), Newport Beach (33.6˚N), and La Jolla

(32.9˚N). Similarly, to evaluate SSH forecasts at coastal sites, tide gauge data were obtained

from the University of Hawaii Sea Level Center (Caldwell et al. 2015) [45] for nine sites from

Toke Point, WA (46.7˚N) to La Jolla, CA (32.9˚N). For model verification, shore station and

tide gauge data were compared to the closest coastal grid cell in the model. For all verification
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datasets, monthly averages were computed from daily data, and monthly anomalies were cal-

culated by removing the 1982–2010 monthly climatology.

Lastly, we leverage a pre-existing set of regional ocean model runs to explore the relative

contributions of atmospheric and oceanic forcing to forecast skill (see Section 4). In brief, the

same forcing used to drive CCSRA was applied to a historical simulation without data assimi-

lation. This run (referred to herein as a hindcast) differs slightly from CCSRA but captures

much of the same variability due to the common forcing. The surface fluxes and ocean bound-

ary conditions for the hindcast were then used to drive two additional runs: one with realistic

wind forcing but climatological ocean boundary conditions (the “Wind” run) and one with

realistic ocean boundary conditions but climatological wind forcing (the “Ocean” run). These

runs, described in detail in [28], were designed to separate the influence of wind forcing over

the regional domain from ocean forcing that comes through the lateral boundaries of the

ocean model.

2.2.3. Skill metrics. Forecast skill is quantified using a suite of deterministic and probabi-

listic metrics that have been previously employed for climate forecast evaluation [17, 46]. Each

metric is calculated across all forecast years (N = 29) for each initialization month and lead

time. Bias, the mean difference between forecast and observed fields, is used to determine the

ability of forecasts to represent the mean state. Anomaly correlation coefficient (ACC), the cor-

relation between forecast and observed anomalies, is used to assess forecast skill for interan-

nual variability. Forecast anomalies are calculated using a lead-dependent forecast climatology

to account for model drift. The combined influence of errors in the forecast mean state and

variability is quantified using the root mean squared difference (RMSD) of observed and fore-

cast fields. Finally, forecast accuracy provides a probabilistic skill measure for categorical pre-

dictions. Here, the categories are terciles of each variable, such that forecast accuracy for a

given initialization and lead time is the fraction of forecasts that correctly predicted whether

an event (e.g., SST being in the upper tercile) would occur [47]. ACC varies between -1 and 1,

with 1 being perfect and 0 being equal to chance. Forecast accuracy varies between 0 and 1,

with 1 being perfect. For terciles, a random forecast is expected to give forecast accuracy of

0.56 (the random probability of a true positive plus the random probability of a true negative;

⅓*⅓ + ⅔*⅔). For bias and RMSD, smaller numbers are better.

As in previous forecast skill assessments (e.g., [16]), forecast skill is evaluated for signifi-

cance using ACC. First, sample autocorrelation is accounted for by calculating the effective

degrees of freedom (Neff) as in [48]:

Neff ¼
N

PN� 1

t¼0
1 � t

N

� �
rF
t
rO
t

where N is the number of samples in the forecast time series, and rτF and rτO are autocorrela-

tion coefficients for the forecast and observed time series, respectively, at lag τ. We then apply

Fisher’s z transformation to the Pearson correlation between forecast and observations (rF,O):

ZF;O ¼ 0:5 ln
1þ rF;O
1 � rF;O

 !

where ZF,O follows a z distribution with Neff– 3 degrees of freedom. We calculate 95% confi-

dence bounds for ZF,O and then transform back to rF,O; if the lower confidence bound is

greater than zero, the forecast skill is significant. As a further benchmark against which model

forecasts can be evaluated, we also calculate forecast skill for persistence forecasts, which

assume that anomalies observed in the month prior to forecast initialization will persist

throughout the forecast.
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For each forecast, an ensemble mean forecast is calculated as the mean of the three ensem-

ble members (Fig 1). The ensemble mean forecast is the main focus of our results (Section 3),

with Section 3.2 discussing the characteristics of individual ensemble members.

2.3. Assessment of ecological forecast potential

As a first step toward assessing the broader applicability of the physical forecasts described

here, we have identified a suite of potential ecological forecast applications in the California

Current System (Table 1). In brief, they are (1) estimates of Pacific sardine spawning habitat

and recruitment off Southern California [49, 50], (2) the Temperature Observations to Avoid

Loggerheads (TOTAL) tool, designed to limit bycatch of Loggerhead turtles in the Southern

California Bight [51], (3) the Habitat Compression Index (HCI), a measure of nearshore cold

water habitat related to ecosystem changes and whale entanglement risk off central California

[52, 53], (4) distribution of suitable albacore habitat off Oregon and Washington [54], (5) the

Anchovy Ecosystem Indicator (AEI), an indicator of top predator foraging and reproduction

off central California [55], (6) EcoCast, a tool designed to limit bycatch and promote sustain-

able fishing for swordfish in the California drift gillnet fishery [56], and (7) WhaleWatch, a

tool to predict blue whale distributions and identify ship strike risk in the Southern California

Bight [39, 57]. Note that this is a non-exhaustive list of potential applications that have not yet

been implemented in a regional forecast framework. There are other west coast applications

for which spatially-explicit forecast capability has been demonstrated, e.g., for Pacific sardine

distribution [58], Pacific hake distribution [59], and Dungeness crab catch rates and megalo-

pae occurrence [60, 61].

For each application, we identified the region, physical variables, and months of the year

for which forecasts are needed (Table 1). For this purpose, each application is associated with

one or more broad regions identified as north, central, and south, with divisions at Cape Men-

docino (~40.5˚N) and Point Conception (~34.5˚N), each extending 300 km offshore (Fig 1).

We then summarized the physical forecast skill given the requirements of each application,

with the goal of providing an initial assessment of how likely they are to be successfully transi-

tioned to a forecast framework (Section 3.4). Specifically, we collated ACCs for each variable/

region/forecast month associated with a given application and then characterized the distribu-

tion of those ACCs. For example, in the case of sardine spawning habitat and recruitment, we

consider the distribution of just six ACCs (one region–the Southern CCS, two variables–SST

Table 1. Prospects for living marine resource forecasts based on physical forecast skill. Key parameters for previously identified potential living marine resource fore-

cast applications. Regions are divided into north (40.5–47.5N), central (34.5–40.5), and south (30.5–34.5), with each extending 300 km offshore (Fig 1). The “Full suite” of

variables includes all of the variables assessed herein (e.g., Fig 2), with the exception of bottom temperature. The “Spatially explicit?” column denotes whether an applica-

tion requires on spatially resolved data (Yes) or an average over a larger area (No).

Application Region Key physical

variables

Target months Spatially

explicit?

References

Sardine spawning habitat and recruitment South SST, SSH March–May No [49, 50]

Temperature Observations To Avoid Loggerheads (TOTAL; bycatch

risk)

South SST December–July No [51]

Habitat Compression Index (HCI; whale entanglement risk) Central SST March–

November

Yes [52, 53]

Albacore distribution North Full suite June–November Yes [54]

Anchovy Ecosystem Indicator (AEI: top predator foraging and

reproduction)

Central Full suite April–July Yes [55]

EcoCast (bycatch risk) North, Central,

South

Full suite August–January Yes [56]

WhaleWatch (ship strike risk) South Full suite May–November Yes [39, 57]

https://doi.org/10.1371/journal.pclm.0000245.t001
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and SSH, and three forecast months–March, April, and May). On the other extreme, for Eco-

Cast we consider the distribution of 180 ACCs (three regions, 10 variables, six forecast

months). All forecasts are taken from the most recent initialization (i.e., forecasts of January–

June are from the January initialization, forecasts of July–December are from the July initiali-

zation). For applications that rely on a large suite of variables, we also consider the skill for a

smaller subset of variables that exhibit relatively high skill (SST, SSH, and buoyancy fre-

quency). Since the forecasts do not include biogeochemistry, chlorophyll concentration is

excluded from this analysis despite being included as a predictor in several of the applications.

3. Results

3.1. Forecast skill

For a coastal band along the U.S. west coast (i.e., within 75 km of shore), the physical variables

evaluated here can be grouped into two broad categories: those that can be forecast skillfully at

relatively long lead times of several months or more, and those for which significant forecast

skill is limited to lead times less than three months (Fig 2). The former set of variables includes

SSH, SST, bottom temperature, and to a lesser extent, upper ocean buoyancy frequency (strati-

fication), while the latter includes mixed layer depth as well as surface wind stress and currents.

Despite some spatial structure in forecast skill, the qualitative distinction between more and

less skillful variables holds across the broader offshore area of the model domain (Fig 3, S2 and

S3 Figs). Given that the atmosphere has much shorter decorrelation scales than the ocean, it is

not surprising that there is limited seasonal forecast skill for surface wind variability, and by

extension for mixed layer depth and surface currents, which are strongly driven by wind forc-

ing. For these variables, a more thorough exploration of subseasonal (i.e., 45–60 day) forecasts

is likely warranted, as there is a wide array of potential marine resource management applica-

tions on those shorter timescales [62]. For the remainder of this section, we focus on the vari-

ables that are more predictable on seasonal timescales.

In the nearshore zone, SSH is the most predictable of all variables evaluated here. When

evaluated with the CCS ocean reanalysis, SSH forecasts exhibit significant skill at all lead times

for both January and July initializations. For SST, bottom temperature, and stratification, fore-

cast skill is dependent more on the time of year being predicted than on the time of year when

forecasts are initialized; both January- and July-initialized forecasts exhibit elevated skill for

predictions of winter and spring conditions. For the January forecasts this period is the first

half of the forecast and much of the skill can be attributed to persistence of anomalies present

at the time of initialization. In contrast, for forecasts initialized in July, skill in the winter-

spring period (corresponding to lead times of>6 months) is significantly higher than that of a

persistence forecast (Fig 2). Elevated skill from the dynamical forecasts in the winter/spring

period is consistent with the influence of the El Niño-Southern Oscillation (ENSO), whose tel-

econnections represent a predictable signal impacting the CCS in the winter and spring follow-

ing the peak of El Niño and La Niña events [20, 63]. The patterns in persistence forecast skill

are consistent with mixed layer dynamics, where a deep winter mixed layer has greater thermal

inertia than the shallow summer mixed layer. Persistence is much more pronounced for bot-

tom temperature than for SST, with significant skill extending 9 months and 4 months for Jan-

uary- and July-initialized forecasts, respectively (compared to 5 months and 1 month for SST).

This elevated skill for bottom conditions at lead times up to ~4 months was also noted by [9].

Additional mechanisms that may contribute to predictability along the U.S. west coast include

advection and reemergence [6, 64, 65], though these mechanisms have not been assessed in

ocean forecasts.
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Fig 2. Skill summary for downscaled forecasts (ROMS-CanCM4-BC) initialized in (left) January and (right) July of

each year, 1982–2010. Forecast skill is shown for conditions averaged over the 75 km coastal band shown in Fig 1, except

bottom temperature, which is averaged to a maximum bottom depth of 1000 m. Four skill metrics are reported here:

anomaly correlation coefficient (ACC), forecast accuracy, bias, and root mean square difference (RMSD). Bias and RMSD

are standardized (i.e., divided by the standard deviation of anomalies across all years) to facilitate comparison between
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variables on the same scale. For ACC, gray dots indicate model forecast skill that is significantly greater than zero (95%

confidence), while white dots indicate model forecast skill that is significantly greater than zero when persistence forecast

skill is not significantly greater than zero. Forecast accuracy is shown for the upper tercile of each variable. For ACC and

forecast accuracy, skill below that of a random forecast (0 for ACC, 0.56 for forecast accuracy) is colored white. Variable

abbreviations (top to bottom) are: sea surface temperature (sst), sea surface height (ssh), bottom temperature (bt), buoyancy

frequency (bf), mixed layer depth (mld), surface eastward and northward current velocities (su, sv), surface eastward and

northward wind stress (sustr, svstr), and wind stress curl (curl).

https://doi.org/10.1371/journal.pclm.0000245.g002

Fig 3. Spatial patterns in forecast skill for oceanic and atmospheric variables. Colors indicate anomaly correlation coefficient for July initialized forecasts at

8.5-month lead (i.e., forecasts of March initialized the prior July). A similar example for January initialized forecasts is shown in S3 Fig. Results are shown for

forecasts with bias corrected forcing (i.e., ROMS-CanCM4-BC).

https://doi.org/10.1371/journal.pclm.0000245.g003
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In addition to temporal patterns in forecast skill, spatial structure is also apparent over the

CCS domain in both the cross-shore and latitudinal directions (Figs 4–6, S4 Fig). For SST (Fig 4),

the nearshore environment is especially unpredictable in summer (e.g., 6.5-month forecasts ini-

tialized in January, 1.5-month forecasts initialized in July), while in winter it exhibits relatively

high forecast skill (e.g., 6.5-month forecasts initialized in July). As noted above, this coastal

predictability in winter is consistent with forcing from ENSO, and it is even more apparent in

SSH (Fig 5). The coastal SSH predictability can arise from ENSO’s atmospheric teleconnection

(through changes in alongshore winds and associated Ekman transport [20]) as well as the oce-

anic teleconnection (poleward propagation of coastal trapped waves [66]). The latter is also con-

sistent with an alongshore gradient in forecast skill, as the oceanic teleconnection is stronger in

Fig 4. Spatial patterns in SST forecast skill. Colors indicate anomaly correlation coefficient for (top) January and (bottom) July initialized forecast at two lead

times. Black stippling indicates regions with forecast skill that is not significantly greater than zero at the 95% confidence level. Results are shown for forecasts

with bias corrected forcing (i.e., ROMS-CanCM4-BC).

https://doi.org/10.1371/journal.pclm.0000245.g004
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the southern CCS than it is farther north [67, 68]. While [20] suggested that the atmospheric tele-

connection was largely responsible for ENSO-related SST forecast skill in a 10-member global

forecast ensemble, here we find that the oceanic teleconnection appears to dominate dynamical

forecast skill for a smaller, higher-resolution forecast ensemble (see Section 4). For bottom tem-

perature, short-lead forecast skill is generally higher at deeper depths, likely due to greater persis-

tence, while winter forecasts initialized in July exhibit higher skill at shallower depths (Fig 6).

Shore-based observations of SST and sea level provide additional data sets with which to

verify our forecasts. Evaluating the forecasts with these in situ datasets leads to patterns in fore-

cast skill similar to those described above (Figs 7 and 8). Specifically, forecasts initialized in

January have higher skill at short lead times, forecasts initialized in July have higher skill at lon-

ger lead times, and there is a clear latitudinal gradient in SSH forecast skill (e.g., see July-initial-

ized lead 6 forecast in July Fig 8). While these patterns are consistent across verification

Fig 5. Spatial patterns in SSH forecast skill. As in Fig 4, but for SSH.

https://doi.org/10.1371/journal.pclm.0000245.g005
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datasets, comparing forecasts to shore-based measurements gives reduced forecast skill (i.e.,

lower anomaly correlations) and highlights a difference in forecast and observed variance,

with forecasts exhibiting lower variability than in situ measurements (Figs 7 and 8). These dis-

crepancies likely arise from two key sources. First, model output (from both forecasts and the

reanalysis) represents conditions averaged over a 0.1˚ (~10 km x 10 km) box, while shore sta-

tions are point measurements and thus can be influenced by very local processes and bathymet-

ric features; these scale differences alone would cause differences even with perfect forecasts.

Second, since the forecasts use the same model configuration as the reanalysis (and are initial-

ized from it for CanCM4-ROMS-BC), skill metrics calculated using the reanalysis are likely

optimistic. For example, relative to the reanalysis, the CanCM4-ROMS-BC initialization is per-

fect, but in reality forecasts will be initialized with some errors. This second effect can be

explored using alternate gridded data sets for verification, and we find that forecast skill changes

little when using OISST or GLORYS for verification rather than CCSRA (S5 and S6 Figs).

Fig 6. Spatial patterns in bottom temperature forecast skill. As in Fig 4, but for bottom temperature. Skill

evaluations are limited to regions with bottom depth< 1000 m. Panels are split in the alongshore direction to focus on

the nearshore region (latitude is indicated on y-axes).

https://doi.org/10.1371/journal.pclm.0000245.g006

Fig 7. Forecast comparison with coastal SST measurements. (left) time series of observed SST and January initialized forecast SST for 1982–2010 at four

locations along the California coast: Farallon Islands (37.7˚N), Pacific Grove, CA (36.6˚N), Newport Beach (33.6˚N), and La Jolla (32.9˚N). Forecast

initializations are shown as colored circles. (right) Forecast skill (as measured by anomaly correlation coefficient) for each location as a function of initialization

month and lead time. Dashed lines show the skill of persistence forecasts, which serve as a baseline against which model forecast skill can be compared.

https://doi.org/10.1371/journal.pclm.0000245.g007
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Given these considerations, the true forecast skill likely falls between the estimates obtained

from verification with CCSRA and with the shore-based time series.

3.2. Characteristics of the forecast ensemble

By comparing individual ensemble members, we can glean further information on the uncertainty

of forecasts as well as relationships between forecast skill for different variables. Forecast spread

(i.e., the difference between the highest and lowest forecasts for a given variable) varies widely

throughout the CCS domain, consistent with patterns of variability in the region (Fig 9). For SST,

bottom temperature, and stratification, the greatest forecast spread occurs in a narrow coastal

band, where high variability coincides with coastal upwelling and relatively shallow bottom

depths. In contrast, forecast spread for SSH is greatest several hundred kilometers offshore of Cali-

fornia where eddy kinetic energy is at a maximum [69] and forecast skill is relatively poor (Fig 5).

By design, the three CanCM4 forecast members chosen for downscaling vary considerably

in their SST forecast skill (see Methods and S1 Fig), and the downscaled forecasts reflect the

Fig 8. Forecast comparison with coastal sea level measurements. As in Fig 7, but for sea level anomalies at nine tide gauge locations spanning the U.S. west

coast: Toke Point, WA (46.7˚N), South Beach, OR (44.6˚N), Charleston, OR (43.3˚N), Crescent City, CA (41.7˚N), Point Reyes, CA (38.0˚N), Monterey, CA

(36.6˚N), Port San Luis, CA (35.2˚N), Los Angeles, CA (33.7˚N), and La Jolla, CA (32.9˚N).

https://doi.org/10.1371/journal.pclm.0000245.g008
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skill of the global ensemble members that forced them. Anomaly correlation coefficients for

SST, averaged across all lead times and initializations, range from ~0.2 (member 2) to ~0.4

(member 10; Fig 10). The same pattern is also apparent for most other variables, indicating

that a forecast that performs relatively well for one aspect of the ocean state (e.g., SST) is likely

to also perform relatively well for others (e.g., SSH, bottom temperature, stratification). Fur-

thermore, the skill of the ensemble means tend to be as good as or better than that of the best

individual ensemble member. This finding is common in assessments of forecast ensembles

(e.g., [17]) and demonstrates the value of including even relatively poorly performing forecasts

in the ensemble.

3.3. Influence of bias-corrected forcing

A key methodological decision when forcing regional ocean models with output from global

climate models is how to correct for biases in the global model output. One approach is to

force the regional model with output that has not been adjusted, simply interpolating the forc-

ing fields to the regional grid (e.g., [9]). Advantages of this method are its relative simplicity

and that it maintains dynamical consistency of the forcing fields, with the tradeoff that the

downscaled model will inherit biases that need to be accounted for. Alternatively, the global

forcing fields can be corrected before running the regional model, with the aim of producing a

Fig 9. Forecast ensemble spread. (top) Mean spread (i.e., max–min) of the three-member forecast ensemble, averaged across all lead times from the July

initialized forecasts, for sea surface temperature (SST), sea surface height (SSH), bottom temperature (BT), and buoyancy frequency (BF). (bottom) Observed

variability in these same variables, calculated as the standard deviation of monthly anomalies from the entire study period. Note that scales are different

between top and bottom panels, and maps of BT and BF are zoomed into the coast where signals are strongest.

https://doi.org/10.1371/journal.pclm.0000245.g009
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more realistic ocean run that does not require post hoc bias correction. Here we employed

both approaches to evaluate the implications of choosing one or the other.

Not surprisingly, bias-correcting the global model output tends to reduce bias in the down-

scaled forecasts (e.g., Fig 1), with the most pronounced impacts seen in bottom temperature,

wind stress curl, and meridional wind stress and currents (Fig 11; note that biases in SSH can

reflect different reference levels for sea level, not necessarily model performance). However,

bias correction can also be performed after downscaling, provided that one can reliably quan-

tify climatological ocean conditions (e.g., with observations or reanalyses). Thus, perhaps of

more interest is how the forecast configuration impacts the representation of interannual vari-

ability. Comparing CanCM4-ROMS to CanCM4-ROMS-BC, we see that impacts on anomaly

forecast skill are generally subtle, though in some cases there do appear to be improvements

(see ΔACC and Δforecast accuracy in Fig 11). In particular, the bias-corrected runs benefit

from being initialized with the near-real-time regional analysis, generating improved skill

especially at shorter lead times. Most notable are improvements in SSH forecasts, as the nar-

row coastal band most influenced by cross-shore Ekman transport is not resolved in the global

model (and therefore in the CanCM4-ROMS run for which initial conditions are interpolated

directly from the global model). While these improvements may be inflated due to the

Fig 10. Forecast skill for individual ensemble members and ensemble mean. CanCM4-ROMS-BC skill for each variable is computed in the 75 km wide

coastal band extending from 30.5 to 47.5N, and then averaged across all lead times and both initialization months to calculate a mean forecast skill for each

variable.

https://doi.org/10.1371/journal.pclm.0000245.g010
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Fig 11. Influence of bias corrected forcing on forecast skill. Differences in skill metrics calculated from forecasts run

using bias corrected forcing (CanCM4-ROMS-BC) and those without bias correcting forcing (CanCM4-ROMS) are

shown for multiple variables, lead times and initialization months (as in Fig 2). Improvements due to bias correction

are indicated by increases (red) for ACC and forecast accuracy, and decreases (blue) for bias and RMSD. Note that bias

in SSH can simply reflect differences in the reference for sea level and not necessarily model performance.

https://doi.org/10.1371/journal.pclm.0000245.g011
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“perfect” initialization of CanCM4-ROMS-BC relative to the CCSRA verification dataset, the

improvements in SSH anomaly forecast skill are confirmed by evaluating both forecast config-

urations against tide gauge data (not shown).

3.4. Prospects for living marine resource applications

Ultimately, the motivation for developing and evaluating the ocean forecasts described here is

to support their broader use, particularly in ecological applications to improve living marine

resource management. While we don’t explicitly evaluate ecological forecasts here, we can tai-

lor the physical forecast evaluation to specific applications as an initial evaluation of their

promise. For a set of potential applications in the CCS (Table 1), the complexity of the required

physical forecasts varies widely, with some needing only spatially-averaged SST forecasts for a

given season and others requiring a large suite of spatially-explicit oceanographic and atmo-

spheric variables for much of the year. These varying levels of complexity are reflected in our

application-specific skill assessment. Forecasts of sardine distribution and recruitment,

TOTAL, and the HCI show more potential as they depend solely on SST and/or SSH, which

have higher mean skill (ACC = 0.4–0.6) as well as lower spread across the requisite physical

forecasts (Fig 12). Mean skill is lower (ACC = 0.2–0.3) and spread is higher for the broad suite

of variables, including stratification, mixed layer depth, winds, and currents, required by the

albacore distribution, AEI, EcoCast, and WhaleWatch applications. For these applications,

some of the underlying forecasts are very skillful (ACC>0.8) while others are no better than a

random guess (ACC<0). The forecast potential for these complex models would increase if

they could be parametrized to use a reduced set of more skillful variables (SSH, SST, buoyancy

frequency; Fig 12), though in some cases a more parsimonious model may not retain sufficient

ecological skill [57].

4. Discussion

The multidecadal set of downscaled ocean reforecasts described herein enables an evaluation

of CCS forecast skill, including its dependence on the variable being considered, initialization

month, lead time, and location within the CCS. In general, the variables we examined can be

separated into groups for which forecast skill was relatively good (SST, SSH, bottom tempera-

ture, stratification) or poor (MLD, surface winds, surface currents). Forecast skill is generally

higher for the first half of the year than the latter half, with forecasts initialized in January

benefitting from strong persistence and forecasts initialized in July benefitting from predict-

ability for late winter/spring conditions that is consistent with the influence of ENSO.

The late winter/spring forecast skill above persistence is most pronounced near the coast,

especially for SSH. This skill could arise from tropical-extratropical teleconnections through

the atmosphere (i.e., alteration of local winds and heat fluxes [28, 70]) and through the ocean

(i.e., poleward propagation of coastal trapped waves [66]). Additional exploratory analyses

suggest that the latter mechanism is the domain one driving skill in the regional forecasts.

First, SST skill above persistence is more closely related to skill above persistence for SSH (a

proxy for the oceanic teleconnection) than for surface wind stress (a proxy for the atmospheric

teleconnection), especially in the southern CCS (Fig 13). Second, when evaluating forecasts

against the “Wind” and “Ocean” sensitivity runs (see Methods), the total skill above persis-

tence is more strongly associated with the Ocean forcing, indicating that the variability being

predicted successfully is largely associated with associated with the oceanic teleconnection

(Fig 14).

Beyond quantifying the potential for regional forecasts to predict ecologically-relevant

ocean variability in the CCS, we can also shed light on additional considerations for
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operational implementation of such a system. There are now multiple examples of the general

approach taken here–linking global climate forecasts to a regional ocean model, which can

subsequently drive various types of ecological models [e.g., 9, 10]. Moving such a system from

retrospective to real-time applications requires that the necessary forcing fields from the global

climate forecast systems be made available in real time, either publicly or in direct collabora-

tion between global and regional modelers. For most global forecast systems, the necessary

fields are not readily available, which has been identified as a bottleneck for marine ecosystem

Fig 12. Semi-quantitative skill assessment for potential ecological forecast applications. For each of the potential forecast applications summarized in

Table 1, box plots show the range of anomaly correlation coefficients for the variables, months, and regions relevant to that application (see methods). In the

reduced models (light green), the same approach is applied but variables are limited to SST, SSH, and buoyancy frequency. Box edges are defined by the 25th

and 75th percentiles. Whisker lengths are based on the 1.5 IQR value, i.e., the maximum whisker length is 1.5 times the interquartile range (IQR; difference

between 25th and 75th percentiles) and whiskers extend to the most extreme data point within that distance. Medians and means are indicated by vertical lines

and filled circles, respectively.

https://doi.org/10.1371/journal.pclm.0000245.g012
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Fig 13. Relationship of skill above persistence for SST, SSH, and surface winds. CanCM4-ROMS-BC minus

persistence forecast skill is shown for July-initialized SST, SSH, and surface wind stress forecasts in nearshore (0–75

km) subregions of the CCS. Wind stress skill is the average of skill for the zonal and meridional components (sustr,

svstr) and is plotted with one-month lead (i.e., the SST response lags wind by one month). Correlations are shown

between SST and wind (blue; proxy for atmospheric teleconnection) and SSH (red; proxy for oceanic teleconnection).

https://doi.org/10.1371/journal.pclm.0000245.g013
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prediction [7]. Once forcing fields are obtained, there are methodological questions regarding

bias correction and initialization of the regional model. Our results show that bias correcting

the global model output leads to a bias-corrected downscaled forecast. However, an alternate

approach is to use the global model output as-is, and bias correct the downscaled forecast out-

put. We found that both methods performed similarly in terms of predicting interannual vari-

ability, though slightly higher anomaly correlations for some variables were apparent in the

forecasts with bias corrected forcing (Fig 11), which were also initialized from a high-resolu-

tion analysis rather than interpolating from the global model. When using this initialization

approach, global model output should be bias corrected before running the regional model, so

that the boundary conditions are consistent with the initial conditions.

We suggest that physical skill evaluations like the one presented here be used to assess a pri-
ori the prospects of living marine resource forecasts. For a given application, one can first iden-

tify the relevant physical variables, region, and time of year for which forecasts are needed. If

these parameters of the ecological forecast align with physical forecast skill, a first condition

has been satisfied for a successful prediction. Of course, this assessment is simplified (for

example, not explicitly addressing whether an application requires high-resolution spatially

resolved conditions or broader area averages; Table 1); however, when trying to identify fore-

cast applications that are likely to be successful, assessments like these provide important

insight with relatively little additional investment. According to this physical forecast assess-

ment, the SSH- and SST-based applications (sardine distribution and recruitment, TOTAL,

HCI) are the most promising of those explored here. However, when multiple physical vari-

ables are used in an application, not all necessarily need to be predicted skillfully in order to

Fig 14. SST forecast skill relative to atmospheric and oceanic forcing. For July-initialized CanCM4-ROMS-BC forecasts at 7.5-month lead, (top) SSH and

(bottom) SST forecast skill are shown using different model outputs for verification: the UCSC ocean reanalysis (CCSRA), the Hindcast (like CCSRA but

without data assimilation), the Wind run (realistic wind forcing but climatological ocean boundary conditions), and the Ocean run (realistic ocean boundary

conditions but climatological winds). Correspondence between the CCSRA and Hindcast shows that verification using the model run without data assimilation

still captures forecast skill. Correspondence between the Hindcast and either the Wind or Ocean run shows which forcing mechanism is more closely tied to

the model forecast skill.

https://doi.org/10.1371/journal.pclm.0000245.g014
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have a useful forecast. For example, a species distribution model built on SST and MLD may

derive forecast skill from SST even if MLD anomalies are not predictable. Furthermore, while

all variables have been weighted equally in our assessment, they do not contribute equally in

the ecological models, where variables such as SST and buoyancy frequency often have rela-

tively high importance. In the examples shown here, albacore distribution, AEI, EcoCast, and

WhaleWatch may all derive viable forecast skill from a smaller suite of variables (SST, SSH,

buoyancy frequency) despite being built with additional variables that are less predictable.

Of course, successfully predicting physical variability does not guarantee the skill of an eco-

logical forecast, which also depends on the robustness of physical-biological relationships.

Such a consideration is exemplified by sardine recruitment, for which the relevant SST fore-

casts are skillful but the relationship between SST and recruitment has not been robust over

time [71]. In some cases, addition of biogeochemistry to the regional forecasts [9] may expand

the list of potential ecological applications (e.g., with bottom oxygen concentration for ground-

fish models or chlorophyll concentration for pelagic species) and allow for more mechanistic

underpinning of biological-environmental relationships.

Lastly, an important topic of exploration is the added value of regional downscaling relative

to existing global forecasts, from climate models as well as statistical methods [e.g., 63]. While

the potential of global forecasts for LMR management has been demonstrated [e.g., 50], there

is a desire to resolve ocean variability on fine scales that are known to influence living marine

resources. However, regional downscaling comes with considerable computational expense

and labor. As a result, downscaled ensembles tend to be relatively small (e.g., 3–6 members)

with sparse availability especially in real time, while global forecasts are operationally produced

with ensemble sizes of order 100. Given the prominent role of internal climate variability on

seasonal forecast timescales, the ability of large global ensembles to adequately represent

uncertainty may outweigh the benefits of higher resolution, especially when forecasting rare

extreme events [72, 73]. Regional downscaling will likely be more beneficial for fine-scale fea-

tures like bottom temperature over the shelf or for nearshore biogeochemical processes, and

less beneficial for variables like SST that are more strongly constrained by global model forc-

ing. Indeed, for two of the SST-based forecast tools discussed in this paper (TOTAL and HCI),

the skill added by downscaling a 3-member ensemble is outweighed by the benefit of using a

much larger (~70-member) ensemble of global models [74]. Similarly, the tradeoffs between

global and downscaled forecasts are also likely to be regionally dependent, with skill in some

regions being more sensitive to resolving fine-scale features, and downscaling will likely to

improving some predictive mechanisms than others (e.g., coastal trapped waves vs. large-scale

atmospheric anomalies). Thus, when scoping potential regional forecast applications, and

when exploring regional ocean prediction more generally, particular attention should be paid

to quantifying the added value of downscaling. We argue that marine ecosystem forecasting

will benefit from more widely available regional ocean forecasts, but that they are not a prereq-

uisite for many living marine resource forecasts. Rather, the development of new regional fore-

casting capabilities should be undertaken in parallel with the development and

implementation of LMR forecasts that leverage available resources.

Supporting information

S1 Fig. Forecast skill for downscaled ensemble members relative to all CanCM4 ensemble

members. (top) SST forecast skill (anomaly correlation coefficient) as a function of lead time

for each of the ten CanCM4 ensemble members, highlighting the three members chosen for

downscaling in color. (bottom) SST forecast skill for all possible unique 3-member ensembles

constructed from the 10-member CanCM4 ensemble (n = 1023; gray lines), with the
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downscaled ensemble used for downscaling shown in black.

(JPG)

S2 Fig. Skill summary for downscaled forecasts (ROMS-CanCM4-BC) initialized in (left) Jan-

uary and (right) July of each year, 1982–2010. As in Fig 2, but for a region extending 300 km

offshore (Fig 1).

(JPG)

S3 Fig. Spatial patterns in forecast skill for oceanic and atmospheric variables. As in Fig 3,

but for January initialized forecasts at 3.5-month lead (i.e., forecasts of April initialized in Janu-

ary).

(JPG)

S4 Fig. Skill summary for downscaled forecasts (ROMS-CanCM4-BC) initialized in (left) Jan-

uary and (right) July of each year, 1982–2010. As in Fig 2, but showing ACC only for north,

central, and south subregions.

(JPG)

S5 Fig. Influence of SST verification dataset on forecast skill evaluation. Anomaly correla-

tion coefficient is shown as a function of lead time for SST forecasts evaluated against CCSRA

(solid lines) and OISST v2.1 (dashed lines). Skill is shown for both initialization months (Janu-

ary and July) and for three regions, outlined in black on the map at right.

(JPEG)

S6 Fig. Influence of reanalysis verification dataset on forecast skill evaluation. Anomaly

correlation coefficient is shown as a function of lead time for SST forecasts evaluated against

CCSRA (solid lines) and GLORYS (dashed lines). Variable names are as in Fig 2. Skill is

shown for both initialization months (January and July) and for a region extending 75 km off-

shore and spanning the CCS from 30.5 to 47.5˚N.

(JPEG)
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first generation of marine ecological forecast products. Front Mar Sci. 2017; 4:289.

6. Jacox MG, Alexander MA, Siedlecki S, Chen K, Kwon YO, Brodie S, et al. Seasonal-to-interannual pre-

diction of North American coastal marine ecosystems: Forecast methods, mechanisms of predictability,

and priority developments. Prog Oceanogr. 2020; 183:102307.

7. Minobe S, Capotondi A, Jacox MG, Nonaka M, Rykaczewski RR. Toward Regional Marine Ecological

Forecasting Using Global Climate Model Predictions From Subseasonal to Decadal Timescales: Bottle-

necks and Recommendations. Front Mar Sci. 2022; 9:855965.

8. Drenkard EJ, Stock C, Ross AC, Dixon KW, Adcroft A, Alexander MA, et al. Next-generation regional

ocean projections for living marine resource management in a changing climate. ICES J Mar Sci. 2021;

78(6):1969–1987.

9. Siedlecki SA, Kaplan IC, Hermann AJ, Nguyen TT, Bond NA, Newton JA, et al. Experiments with sea-

sonal forecasts of ocean conditions for the northern region of the California Current upwelling system.

Sci Rep. 2016; 6(1):1–18.

10. Kearney KA, Alexander M, Aydin K, Cheng W, Hermann AJ, Hervieux G, et al. Seasonal predictability

of sea ice and bottom temperature across the eastern Bering Sea Shelf. J Geophys Res Oceans. 2021;

126(11):e2021JC017545.

11. Bograd SJ, Hazen EL, Maxwell S, Leising AW, Bailey H, Brodeur R. Offshore ecosystems. In Mooney

H& Zavaleta E(Eds.), Ecosystems of California—A source book (pp. 287–309). Oakland, CA: Univer-

sity of California Press. 2016.

12. Checkley DM, Barth JA. Patterns and processes in the California Current System. Prog Oceanogr.

2009; 83(1–4):49–64.

13. Schwing FB, Bond NA, Bograd SJ, Mitchell T, Alexander MA, Mantua N. Delayed coastal upwelling

along the US West Coast in 2005: A historical perspective. Geophys Res Lett. 2006; 33(22).

14. Chavez FP, Collins CA, Huyer A, Mackas DL. El Niño along the west coast of North America, Editorial.

Prog. Oceanogr. 2002; 54:1–5.

15. Bond NA, Cronin MF, Freeland H, Mantua N. Causes and impacts of the 2014 warm anomaly in the NE

Pacific. Geophys Res Lett. 2015; 42(9):3414–3420.

16. Stock CA, Pegion K, Vecchi GA, Alexander MA, Tommasi D, Bond NA, et al. Seasonal sea surface tem-

perature anomaly prediction for coastal ecosystems. Prog Oceanogr. 2015; 137:219–236.

PLOS CLIMATE Downscaled CCS forecasts and potential applications

PLOS Climate | https://doi.org/10.1371/journal.pclm.0000245 October 31, 2023 25 / 28

https://media.fisheries.noaa.gov/2021-08/NOAA%20Climate%20and%20Fisheries%20Initiative%20Fact%20Sheet.pdf
https://media.fisheries.noaa.gov/2021-08/NOAA%20Climate%20and%20Fisheries%20Initiative%20Fact%20Sheet.pdf
https://doi.org/10.25923/4ftj-3f44
https://doi.org/10.1371/journal.pclm.0000245


17. Hervieux G, Alexander MA, Stock CA, Jacox MG, Pegion K, Becker E, et al. More reliable coastal SST

forecasts from the North American multimodel ensemble. Clim Dyn. 2019; 53(12):7153–7168.

18. Merryfield WJ, Lee WS, Boer GJ, Kharin VV, Scinocca JF, Flato GM, et al. The Canadian seasonal to

interannual prediction system. Part I: Models and initialization. Month Weather Rev, 2013; 141

(8):2910–2945.

19. Kirtman BP, Min D, Infanti JM, Kinter JL, Paolino DA, Zhang Q, et al. The North American multimodel

ensemble: phase-1 seasonal-to-interannual prediction; phase-2 toward developing intraseasonal pre-

diction. Bull Am Met Soc. 2014; 95(4):585–601.

20. Jacox MG, Alexander MA, Stock CA, Hervieux G. On the skill of seasonal sea surface temperature fore-

casts in the California Current System and its connection to ENSO variability. Clim Dyn. 2019; 53

(12):7519–7533.

21. Jacox MG, Tommasi D, Alexander MA, Hervieux G, Stock CA. Predicting the evolution of the 2014–

2016 California Current System marine heatwave from an ensemble of coupled global climate fore-

casts. Front Mar Sci. 2019; 6:497.

22. Veneziani M, Edwards CA, Doyle JD, Foley D. A central California coastal ocean modeling study: 1.

Forward model and the influence of realistic versus climatological forcing. J Geophys Res Oceans.

2009; 114(C4).

23. Moore AM, Edwards CA, Fiechter J, Drake P, Neveu E, Arango HG, et al. A 4D-Var analysis system for

the California Current: A prototype for an operational regional ocean data assimilation system. In Data

Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II) (pp. 345–366). 2013.

Springer, Berlin, Heidelberg.

24. Crawford WJ, Smith PJ, Milliff RF, Fiechter J, Wikle CK, Edwards CA, et al. Weak constraint four-

dimensional variational data assimilation in a model of the California Current System, Adv Stat Clim

Meteorol Oceanogr. 2016; 2:171–192.

25. Mattern JP, Song H, Edwards CA, Moore AM, Fiechter J. Data assimilation of physical and chlorophyll

a observations in the California Current System using two biogeochemical models. Ocean Modell.

2017; 109:55–71.

26. Jacox MG, Moore AM, Edwards CA, Fiechter J. Spatially resolved upwelling in the California Current

System and its connections to climate variability. Geophys Res Lett. 2014; 41(9):3189–3196.

27. Jacox MG, Fiechter J, Moore AM, Edwards CA. ENSO and the California Current coastal upwelling

response. J Geophys Res Oceans. 2015; 120(3):1691–1702.

28. Jacox MG, Bograd SJ, Hazen EL, Fiechter J. Sensitivity of the California Current nutrient supply to

wind, heat, and remote ocean forcing. Geophys Res Lett. 2015; 42(14):5950–5957.

29. Drake PT, Edwards CA, Morgan SG, Dever EP. Influence of larval behavior on transport and population

connectivity in a realistic simulation of the California Current System. J Mar Res. 2013; 71:317–350.

30. Brodie S, Jacox MG, Bograd SJ, Welch H, Dewar H, Scales KL, et al. Integrating dynamic subsurface

habitat metrics into species distribution models. Front Mar Sci. 2018; 5:219.

31. Becker EA, Carretta JV, Forney KA, Barlow J, Brodie S, Hoopes R, et al. Performance evaluation of

cetacean species distribution models developed using generalized additive models and boosted regres-

sion trees. Ecol evol. 2020; 10(12):5759–5784. https://doi.org/10.1002/ece3.6316 PMID: 32607189

32. Muhling BA, Brodie S, Smith JA, Tommasi D, Gaitan CF, Hazen EL, et al. Predictability of species distri-

butions deteriorates under novel environmental conditions in the California Current System. Front Mar

Sci. 2020; 7:589.

33. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A., Muñoz-Sabater J, et al. The ERA5 global
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