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A B S T R A C T   

Sparse and inconsistent coverage of ocean observations makes analysis of climate impacts on ocean physics and marine ecosystems challenging. As a result, ocean 
reanalyses (i.e., ocean models constrained by observations through data assimilation) were developed to provide historical ocean state estimates that are spatially 
and temporally uniform. Recent advances in high performance computing and the number and quality of observations have led to the development of high-resolution 
ocean reanalyses, which offer an opportunity to investigate coastal ocean variability with enhanced fidelity. In this study, we evaluate the ability of three high- 
resolution ocean reanalyses, including the Global Ocean Reanalysis and Simulations (GLORYS), the Ocean Reanalysis System version 5 (ORAS5), and the Califor
nia Current System Reanalysis (CCSRA), to accurately represent ocean temperature and salinity (from the surface to the bottom), sea surface height, and mesoscale 
activity in the California Current Large Marine Ecosystem (CCLME). Specifically, we compare these reanalyses to a variety of assimilated and independent in situ and 
satellite derived observations along the U.S. west coast. We find that the reanalyses generally reproduce large-scale variability in temperature and sea surface height 
within the CCLME, including effects of major ENSO events and recent marine heatwaves. We also show that GLORYS and CCSRA, with their finer horizontal res
olution, have enhanced fidelity in simulating nearshore ocean parameters such as coastal sea level and bottom temperature along the continental shelf. Our results 
suggest that these tools can be used to study the fine-scale features of the California Current System over the past several decades.   

1. Introduction 

The spatial inhomogeneity of global ocean observations in the his
torical record makes rigorous analyses of long-term ocean climate 
variability and change challenging. Ocean model simulations generate 
continuous data in both time and space, ideal for ocean climate studies, 
but are also affected by biases and errors that can lead to an unrealistic 
representation of key physical processes. To overcome the respective 
limitations of observations and model simulations, while harnessing the 
strengths of each, modelling centers blend dynamical models with at
mospheric and oceanic observations through data assimilation tech
niques. These efforts have resulted in observationally constrained 
estimates of the climate state that: (1) combine the full spatiotemporal 
coverage of models with the accuracy of observations, and (2) are easily 
accessible for scientific and industrial applications (Balmaseda et al., 
2015; Storto et al., 2019). 

Despite these advantages, there can still be large uncertainties in 
ocean reanalysis products. In particular, some parts of the global open 
ocean are historically under-observed (e.g., the Southern Ocean), the 
ocean subsurface is much less constrained than the satellite-observable 
surface, and coastal regions are often dominated by mesoscale ocean 

features that may not be properly resolved by the relatively coarse res
olution of many global ocean reanalyses (Balmaseda et al., 2015; de 
Souza et al., 2021; Lee et al., 2009). As a result, reanalysis estimates in 
these regions may be increasingly dependent on the underlying ocean 
model configuration and its parameterization of subgrid scale processes, 
leading to large differences between ocean reanalyses from different 
modeling centers. (Balmaseda et al., 2015; Masina et al., 2011; Storto 
et al., 2019; Xue et al., 2017, 2012; Zhu et al., 2012). 

Recent advances in ocean model physics (Breivik et al., 2015), the 
number and quality of observations (Legeais et al., 2018), and data 
assimilation techniques (Sakov et al., 2012; Storto et al., 2018) have led 
to the development of several high-resolution global and regional ocean 
reanalyses. With horizontal resolution as fine as 8 km, these new tools 
offer a unique opportunity to study ocean variability and change, as well 
as their impacts on marine species distributions and populations, with 
enhanced fidelity. Given the expanding use of ocean reanalyses for 
regional studies of oceanography and ecology, it is important to verify 
the accuracy of these high-resolution state estimates against indepen
dent (i.e., unassimilated) in situ ocean observations where available (de 
Souza et al., 2021; Xie et al., 2008). Indeed, increasing model resolution 
presents its own set of challenges, including (among others) potential 
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errors in simulating mesoscale eddies and sharp gradients in ocean 
properties, coupling tides and waves, downscaling of atmospheric 
forcing, and the accuracy of bathymetry (e.g., Storto et al., 2019). For 
example, (de Souza et al., 2021) compared several high-resolution ocean 
reanalyses to a variety of observations in New Zealand coastal waters 
and showed that some of the datasets inaccurately represented impor
tant coastal boundary currents. 

Another region that would also benefit from a thorough intercom
parison of high-resolution ocean reanalyses is the California Current 
Large Marine Ecosystem (CCLME; Fig. 1). The CCLME is home to a 
highly productive marine ecosystem with primary productivity and fish 
catch disproportionately high for its spatial extent (Chavez and Messié, 
2009). This elevated productivity can be attributed to upwelling of 
nutrient rich waters along the U.S. west coast, which is driven by the 
seasonal intensification of northerly winds in the spring and summer. 
These seasonal wind changes and the associated impact on ocean 
properties are sensitive to climate variability on time scales of weeks to 
decades (Checkley and Barth, 2009). In particular, upwelling in the 
CCLME is strongly modulated by large-scale climate modes such as the 
El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation, 
and the North Pacific Gyre Oscillation (Di Lorenzo et al., 2008; Jacox 
et al., 2015, 2014). In recent years, there has been rapid growth in the 
use of ocean reanalyses for oceanographic and ecological research in the 
CCLME, with reanalyses providing the environmental information used 
to develop oceanographic indices (Jacox et al., 2018; Santora et al., 
2020), and to model species distribution shifts (e.g., Abrahms et al., 
2019; Brodie et al., 2018) and population fluctuations (e.g., Schroeder 
et al., 2014; Tolimieri et al., 2018). 

There have been some previous comparisons between high- 
resolution reanalyses and observations in the CCLME. For example, 
(Schroeder et al., 2014) showed that the high-resolution (1/10̊) data 
assimilative implementation of the Regional Ocean Model System 
(ROMS) from the University of California Santa Cruz (hereafter referred 
to as the California Current System reanalysis or CCSRA) compares well 
to in situ hydrographic measurements of ocean temperature, salinity, 
and upper ocean stratification during boreal winter and spring in the 
coastal ocean between Monterey Bay and Pt. Arenas. Additionally, 
(Neveu et al., 2016) showed that the CCSRA can credibly capture the 
spatial distribution of Eddy Kinetic Energy (EKE) off California’s coast. 
While these studies indicate that high-resolution ocean reanalyses may 

provide an accurate and spatiotemporally consistent depiction of ocean 
properties in the CCLME over the last several decades, they are primarily 
focused on a single regional ocean model. A careful analysis of the 
strengths and weaknesses of several different high-resolution ocean 
reanalyses in this region would benefit marine scientists interested in 
leveraging these tools for research into ocean climate variability and its 
impact on marine ecosystems in the CCLME. 

In this study, we independently verify the mean and variability of 
key ocean parameters in the CCLME from three high-resolution ocean 
reanalyses—the Global Ocean Reanalysis and Simulations (GLORYS), 
the Ocean Reanalysis System version 5 (ORAS5), and CCSRA. In 
particular, we focus on the historical representation of temperature and 
salinity at the ocean surface, within the water column, and at the ocean 
bottom along the continental shelf, as well as SSH along the U.S. west 
coast. These variables were chosen due to their importance as leading 
indicators of marine resource response to climate variability (Ottersen 
et al., 2010; Pinsky et al., 2013) and due to the availability of in situ and 
satellite observations suitable for model reanalysis evaluation. 

2. Data and methods 

2.1. The high-resolution ocean reanalyses 

Below are descriptions of the high-resolution ocean reanalyses 
evaluated in this study. The spatiotemporal availability of each is further 
summarized in Fig. 1 and Table 1. 

a) GLORYS 
We evaluate data from the Global Ocean Reanalysis and Simulations 

(GLORYS) version 1 global ocean reanalysis (Lellouche et al., 2021). 
Available through the Copernicus Marine Environmental Monitoring 
Service (CMEMS), GLORYS offers daily mean and monthly mean ocean 
variables at 1/12̊ (~8 km) horizontal resolution with 50 vertical levels. 
The reanalysis is generated using the Nucleus for European Modelling of 
the Ocean (NEMO) ocean model, forced at the surface by the European 
Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim 
atmospheric reanalysis. Output is available for 1993–2019, during 
which the model assimilates along-track satellite altimetry, satellite sea 
surface temperature (SST), sea ice concentrations, and in situ profiles of 
temperature and salinity from the Coriolis Ocean database ReAnalysis 
(CORA) dataset (Szekely et al., 2019). 

Fig. 1. (a) Spatial distribution and (b) temporal availability of all data sets used in this study. Shading in (a) denotes total number of Argo profiles since 2002, binned 
in 1̊ x 1̊ grid cells. Black line outlines in the CCLME. Dashed gray line denotes the CCSRA regional domain. Black lines for each dataset in (b) indicates that the data 
was available for the given time step somewhere within the CCLME. 
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b) ORAS5 
The global Ocean Reanalysis System version 5 (ORAS5; Zuo et al., 

2019, 2017), which includes a dynamic-thermodynamic sea ice model 
and surface wave model, was developed at ECMWF. Like GLORYS, it 
uses the NEMO ocean model (version 3.4.1) and surface forcing from the 
ERA-Interim reanalysis. The ORAS5 assimilates in-situ profiles of tem
perature and salinity from the “EN4” dataset (Good et al., 2013), merged 
in situ and satellite SST from HadISST2, and along track satellite 
altimeter-derived sea-level anomalies from AVISO (Archiving, Valida
tion and Interpretation of Satellite Oceanographic data). Monthly and 
daily mean fields are available from 1979 to present, at a horizontal 
resolution of 0.25̊ (~25 km). There are 75 vertical depth levels, with 
layer thickness increasing from 1 m near the surface to 200 m in the deep 
ocean. ORAS5 consists of five ensemble members obtained using per
turbing forcing fields and slight sampling differences in the observations 
that were assimilated. Here we used the ensemble mean of the five 
members. 

c) CCSRA 
A series of California Current System (CCS) ocean reanalyses have 

been developed by the Ocean Modeling group at UC Santa Cruz 
(https://oceanmodeling.ucsc.edu). Here, we evaluate a historical rean
alysis covering 1980–2010 (Neveu et al., 2016), and an extension 
covering 2011–2018. In both cases, the CCSRA employ the Regional 
Ocean Modeling System with 4-dimensional variational data assimila
tion (ROMS 4D-Var; Moore et al., 2011). The domain covers nearly the 
entire the U.S. west coast (30-48̊N) and offshore to 134̊W with a hori
zontal resolution of 0.1̊ (~10 km) and 42 terrain-following vertical 
levels (Fig. 1). Surface forcing for the 1980–2010 reanalysis is derived 
from a combination of ECMWF atmospheric reanalyses (ERA-40 and 
ERA-Interim) and cross-calibrated multiplatform (CCMP) winds, while 
the extension uses higher-resolution forcing from the Naval Research 
Laboratory’s Coupled Ocean Atmosphere Mesoscale Prediction System 
(COAMPS). Ocean boundary conditions are provided by the Simple 
Ocean Data Assimilation (SODA) product for 1980–2010, and from the 
GLORYS product after 2010. Assimilated data include satellite SST from 
AVHRR, AMSR-E, and MODIS, satellite SSH from AVISO/CMEMS, and in 
situ temperature and salinity profiles from the EN3 database (Ingleby 
and Huddleston, 2007) for 1980–2010 and from the EN4 database 
(Good et al., 2013) post-2010. 

Due to changes in the surface forcing and ocean boundary conditions 
between the historical CCSRA and its extension, care must be taken 
when combining the two into a continuous record. In general, agree
ment is good for quantities that are well constrained by observations, 

including temperature. For SSH, the switch in ocean boundary condi
tions introduces a small offset (Section 3.6) that could be misinterpreted 
as a trend or low frequency variability. Past studies have found that 
some variables (e.g., surface properties, upper ocean stratification) are 
suitable for concatenation (Brodie et al., 2018) while others (e.g., sub
surface currents) are not (Tolimieri et al., 2018). Thus, the prudent 
approach for any user would be to examine the reanalyses for any 
obvious inconsistencies that might preclude stitching them together for 
a specific application. 

2.2. Observations used for model evaluation 

Below are descriptions of the observations used to validate the three 
reanalyses described above. The spatiotemporal availability of all ob
servations is further summarized in Fig. 1 and Table 2. 

a) Sea surface temperature and sea surface salinity 
We first compare SST from the three reanalyses to those from the 

NOAA Optimum Interpolation Sea Surface Temperature version 2.1 
(OISSTv2.1; Huang et al., 2021; Reynolds et al., 2007) dataset, available 
for 1981 to present. The OISST blends satellite measurements with in situ 
data from ship, buoys and Argo floats, using a number of steps to reduce 
biases and provide the data on a 0.25◦ grid. However, the processes 
inherent in creating the OISST smooths the SST field and thus the true or 
feature resolving resolution is less than 0.25◦ (Reynolds et al., 2013); the 
smoothing varies in time and space but can be more pronounced in 
coastal regions (Reynolds and Chelton, 2010). Therefore, in order to 
further validate the coastal environment in the reanalyses, we compare 
with SST measurements from six nearshore stations that span most of the 
U.S. west coast (see Fig. 1 yellow diamonds and Table 2). These in situ 
observations were not assimilated into any of the reanalyses, and thus, 
provide an independent estimate of SST variability. 

Sea surface salinity (SSS) from the reanalyses is compared to the 
Level-4 SSS data from the Multi-Mission Optimally Interpolated Sea 
Surface Salinity (OISSS) Global Dataset V1.0 (Melnichenko et al., 2016). 
This dataset optimally interpolates Level-2 swath measurements of SSS 
from the Aquarius, Soil Moisture Active Passive (SMAP), and Soil 
Moisture and Ocean Salinity (SMOS) satellite missions to produce 
monthly mean SSS estimates from August 2011 to present on a global 
0.25̊ grid. We limit our SSS comparisons to 2012–2018, which is the 
longest overlapping period between the satellite observations and the 
reanalyses. 

b) Water column temperature and salinity 
Water column temperature and salinity was obtained from two 

Table 1 
Attributes of the three reanalyses used in this study. The acronyms in the table are: First Guess at the Appropriate Time (FGAT); Copernicus Marine Environment 
Monitoring Service (CMEMS); eXpendable BathyThermograph (XBT); Mechanical Bathythermograph (MBT); Advanced Very High-Resolution Radiometer (AVHRR); 
Coriolis Ocean database ReAnalysis (CORA); Operational Sea Surface Temperature and Ice Analysis (OSTIA).  

Reanalysis GLORYS ORAS5 CCSRA 

Institute Mercator Ocean International 
(consortium) 

ECMWF University of California Santa Cruz 

Ocean Model NEMO OCEAN5 ROMS 
Domain global global California Current System 
Horizontal resolution 1/12◦ 1/4◦ 1/10◦

Levels 50 75 42 
Vertical Coordinate Depth (z) Depth (z) Terrain following (ρ) 
First level 0.5 m 0.5 m variable 
Atmospheric Forcing ERA-Interim ERA-Interim (1979–2015), ECMWF-NWP (2015- 

present) 
ERA40 (1982–87), 
ERA40 + CCMP winds (1987–2001), 
ERA Interim + CCMP winds (2001-present) 

Assimilation Scheme 3D-Var Kalman Filter 3D-Var FGAT with 5 day window 4D-Var 
Assimilated 

Observations 
AVHRR: SST, 
CMEMS: SLA,CORA: In-situ T/S profiles 

HadISST2 + OSTIA: SST, AVISO: SLA, 
EN4: In situ T/S profiles with XBT and MBT 
correction 

AVHRR, AMSR-E, and MODIS: SST, AVISO/CMEMS: 
SSH, 
EN3: In situ T/S profiles for 1980–2010 
EN4: In situ T/S profiles for post-2010 

Archive period daily/monthly daily 6 hourly 
Period 1993–2019 1979–2018 1980–2019 
References Lellouche et al. 2021 Zuo et al. 2017, 2019 Neveu et al. 2016  
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sources. First, temperature profiles between the surface and 500 m (or 
the bottom if shallower) were obtained from the California Underwater 
Glider Network (CUGN, Rudnick et al., 2017). The gliders follow three 
paths originating from the California coast (at Monterey, Pt. Conception 
and Dana Pt.) extending southwestward ~ 500 km offshore, with each 
out-and-back section taking 2–3 weeks to complete (Fig. 1; purple lines). 
Gliders dive between the surface and 500 m with each dive taking 
approximately-three hours and covering three km horizontally. Several 
statistical methods are applied to the original data, including a least 
squares fit and objective mapping, to obtain anomalies and a mean 
seasonal cycle on a rectangular grid as a function of depth, distance 
offshore, and time (Rudnick et al. 2017). We compare the reanalyses to 
this gridded data, which has a vertical resolution of 10 m, a horizontal 
resolution of 5 km, and a temporal resolution of 10 days. Our compar
isons are for the period 2007 to 2018, the longest overlapping time 
period for the glider data and the reanalyses. The CUGN data is not 
assimilated into ORAS5 or GLORYS, but it is assimilated into the his
torical CCSRA reanalysis from 1980 to 2010. The CCSRA extension from 
2011 to 2018 does not assimilate CUGN data. 

Each reanalysis is further compared with Argo profile measurements 
of water column temperature and salinity in the CCLME. Argo is a global 
network of autonomous profiling floats that measure the temperature 
and salinity of the ocean’s upper 2000 m. Since 1999, the Argo program 
has collected more than 2 million hydrographic profiles worldwide 
(Jayne et al., 2017). Here, we evaluate 18,971 quality-controlled Argo 
profiles in the CCLME covering 2002–2018 (Fig. 1a; shading). For our 
comparisons, we average profiles in three sub-regions within the 
CCLME: (1) 40̊N-50̊N (referred to as North LME or NLME), (2) 30̊N-40̊N 
(referred to as Central LME or CLME), and (3) 20̊N-30̊N (referred to as 
South LME or SLME). See Fig. S1 for sub-region boundaries. 

Prior to analysis, individual Argo profiles were categorized into one 
of the three CCLME sub-regions based on their latitude and longitude. 
Profile measurements were then aggregated in the vertical into 20 m 
bins in order to acquire uniformly spaced temperature profiles in each 
sub-region as a function of time. Finally, we averaged all profiles within 
a given month to produce monthly mean water column temperature 
measurements as a function of depth. See Figs. S1 and S2 for the density 
of Argo measurements in depth and time. While Argo measurements are 
assimilated into each of the ocean reanalyses discussed in this study, an 
intercomparison between Argo and the reanalyses may shed light on any 
potential deficiencies in the individual data assimilation schemes. In 
particular, differences in model physics, resolution, and the incorpora
tion of other in situ datasets may impact the overall assimilation of Argo 
measurements. When compared to Argo data, all temperature and 
salinity anomalies are relative to the period 2002–2018. 

c) Bottom temperature 
Bottom temperature data were obtained from three sources. First, the 

deepest portion of the glider profiles described above were used as near- 
bottom temperature measurements. Some comparisons were not prac
tical as: (1) the shelf was too narrow for comparing reanalyses to gliders 
west of Dana Pt.; (2) the CCSRA grid points were too far away for a 
reasonable comparison with the CUGN location at 410 m in Monterey 
Bay as a result of using smoothed bathymetry, and (3) the ORAS5 
reanalysis was too coarse for comparisons with the CUGN data to be 
meaningful. Second, we used temperature observations from conduc
tivity, temperature, depth sensor (CTD) casts at three locations (See 
Table 2) along the Newport Hydrographic Line (Huyer et al., 2007), 
which extends west from the Oregon coast at 44.65◦N (Fig. 1; green 
line), to estimate the variability of bottom temperature during 2008 to 
2018. Third, we use bottom temperature data that are collected as part 
of the U.S. West Coast Groundfish Bottom Trawl Survey (WCGBTS; 
(Keller et al., 2017), conducted between May and October of each year 
by NOAA’s Northwest Fisheries Science Center. Since 2003, the 
WCGBTS has covered the shelf/slope region of the entire U.S. west coast, 
sampling bottom depths of 55–1280 m using a random stratified sam
pling design, with ~500–700 total stations per year (Fig. 1; red dots). 
Each tow is ~15 min in duration, covering ~0.55 km horizontally. The 
Newport Line and bottom trawl survey data are not assimilated in any of 
the reanalyses. As mentioned previously, the CUGN data is only assim
ilated in the first segment of the CCSRA data (1980–2010). Therefore, 
many of these observations offer an independent metric by which to 
make our comparisons. 

While the stratified random sampling pattern of the trawl data pre
cludes the generation of climatologies and thus an evaluation of bottom 
temperature variability, it does provide much more thorough spatial 
coverage from which we can assess the ability of reanalyses to reproduce 
mean patterns of bottom temperature. Bottom temperature variability 
will instead be assessed using the measurements from the CUGN and 
Newport Line, which are more consistent in time and space than the 
trawl data. Comparing bottom temperature between observations and 
reanalyses is made further complicated by the relatively narrow shelf 
and steep bathymetry off the U.S. west coast. Even with ~10 km rean
alysis resolution, the true bottom depth can be very different from the 
reanalysis bottom depth at the nearest grid point, which in turn can 
produce large differences in the observed and reanalysis bottom 

Table 2 
Description of observations used for comparison with reanalyses.  

Data Set Description Period References 

OISST v2.1 Merged satellite and in situ 
SST data mapped to a 1/4◦

grid 

1982-present Reynolds et al. 
2007; Huang et al. 
2021 

OISSS v1.0 Merged satellite SSS data 
mapped to a 1/4̊ grid 

2012–2018 Melnichenko et al. 
2016 

Nearshore 
stations 

SST from Stonewall Bank 
(44.7◦N, 124.5◦W), 
Charleston (43.3◦N, 
124.3◦W), Trinidad Beach 
(41.1◦N, 124.1◦W), 
Farallons: (37.7◦N, 
123.0◦W, Newport Beach 
(33.6◦N, 117.9◦W), 
Scripps Pier (32.9◦N, 
117.3◦W). 

1993-present 
(with gaps) 

https://shorestati 
ons.ucsd.edu/shor 
e-stations-data/ 

Gliders California Underwater 
Glider Network (CUGN), 3 
sections that extend ~ 500 
km offshore. Surface to 
500 m (or near bottom) 

2008–2018 Rudnick et al. 2017 

Newport 
line 

CTD casts at three 
locations along the 
Newport Hydrographic 
Line extends offshore from 
Oregon coast at 44.7◦N for 
locations:T1: 124.1◦W  
(25 m)T3: 124.1◦W  
(55 m)T4: 124.3◦W  
(75 m) 
Bottom depth in 
parentheses 

2008–2018 Huyer et al. 2007 

Argo Profiling floats drift at a 
depth of 1000 m over 10 
days, then dive to 2000 m 
and return to the surface. 
~ 4000 currently deployed 
over the global ocean with 
18,97 profiles in the 
CCLME during 2002–18. 

2002–2018 Jayne et al. 2017 

Tide Gauges Sea level from 9 tide 
gauges spanning the west 
coast 

Varies  

Bottom 
Trawls 

Bottom temperature 
measurements from U.S. 
West Coast Groundfish 
Bottom Trawl Survey 
(WCGBTS) 

Varies Keller et al., 2017 

AVISO Satellite altimetry 
measurements on a 0.25̊
grid 

1993–2012 Ducet et al., 2000  
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temperature. One can account for this discrepancy by matching the 
bottom temperature measurements with reanalysis output at the same 
depth (not necessarily at the reanalysis bottom). Specifically, for each 
bottom temperature observation we first find the closest reanalysis grid 
cell where the model bottom is deeper than the observed depth, and then 
linearly interpolate the reanalysis water temperature profile to the depth 
of the observation (Fig. 2). To illustrate the influence of using the 
reanalysis bottom temperature rather than a depth-matched tempera
ture, we compare the two methods for the bottom trawl data (Section 
3.5). 

d) Coastal sea surface height 
To verify sea level variability along the U.S. west in the ocean 

reanalyses we compare them to data from nine tide gauges (Fig. 1; black 
dots) maintained by the Joint Archive for Sea Level (JASL), which is a 
partnership between the University of Hawaii Sea Level Center (UHSLC) 
and the National Centers for Environmental Information (NCEI). Here, 
we utilize the Research Quality Data Set (RQDS). These observations are 
not assimilated in any of the reanalyses discussed here, and therefore 
offer an independent metric by which to verify sea level changes. For 
this comparison, monthly SSH anomalies are relative to a long-term 
climatology of 1993–2018, which is the longest overlapping period 
between the tide gauges and the reanalyses. 

e) Eddy Kinetic Energy 

Finally, ocean mesoscale variability is ubiquitous along the U.S. west 
coast and plays a key role in modulating regional ocean dynamics such 
as coastal upwelling in the CCLME, which can impact primary produc
tivity through the vertical transport of key nutrients in and out of the 
euphotic zone (Gruber et al., 2011; Renault et al., 2016). We assess the 
representation of mesoscale variability in the ocean reanalyses using 
geostrophic Eddy Kinetic Energy (EKE), calculated as: 

EKE =
1
2
(U′2

g + V ′2
g) (1) 

Where U′
g and V′

g, respectively, are the zonal and meridional com
ponents of the daily mean geostrophic surface current anomalies esti
mated from daily mean SSH anomalies. The EKE in the ocean reanalyses 
is compared to the EKE calculated from AVISO satellite altimetry mea
surements (Ducet et al., 2000), which provides daily mean SSH anom
alies from 1993 to 2012 on a 0.25̊ grid. For consistency with the AVISO 
data, SSH anomalies from each reanalysis are computed relative to the 
long-term mean of a 1993–2012 base period. The EKE in each reanalysis 
was first calculated on the native model grid and then interpolated to the 
AVISO 0.25̊ grid in order to compare them to the coarser AVISO data. 

2.3. Analysis approach 

a) Statistical methods 
The purpose of this study is to inform potential users of these high- 

resolution reanalyses whether (and in what context) these different 
data assimilative models may act as a reliable substitute for the 
comparably noisy, discontinuous and sporadic raw ocean measure
ments. To support this goal, we evaluate each ocean parameter using a 
set of common statistical comparisons that are broadly applicable to a 
range of potential research applications. These comparisons include 
assessments of the reanalyses’ mean state and variability as measured by 
the mean bias, root-mean-square error (RMSE), and correlation coeffi
cient relative to observations. Where appropriate statistical significance 
is evaluated using a Student’s t-test with a 95% confidence interval after 
correcting the degrees of freedom for lag-1 autocorrelation. 

b) Observation limitations 
Due to the different spatiotemporal coverage and sampling schemes 

of different observational platforms, each is well suited to some types of 
analyses but not others. For instance, to assess the degree to which 
reanalysis data represents the observed variability of an ocean param
eter at any given location (as measured by RMSE and/or the correlation 
coefficient), consistent measurements are required at that location for 
many years to derive a representative climatology and anomalies. Some 
observational platforms do provide long records at one location (such as 
the coastal station data analyzed in Section 3.1b), but these measure
ments are not useful for assessing the variability of an ocean parameter 
over large areas. As a result, to validate variability in reanalyses on a 
broader scale, we either: (1) aggregate sporadic point measurements in 
time and space to produce a consistent record suitable for calculating 
anomalies for comparison to the models (e.g., our approach with Argo 
profiles in Sections 3.3b and 3.4b) or (2) rely on observational products 
that have been infilled or interpolated onto a grid, such as AVISO, 
OISST, and OISSS. Gridded observations may feature statistical artifacts 
or biases introduced during interpolation (Reynolds et al., 2013; Rey
nolds & Chelton, 2010). However, by also comparing the reanalyses to 
raw and in situ point measurements, such as the Newport line data, shore 
stations, tide gauges, bottom trawl measurements, and Argo profiles, we 
hope to assess any sensitivities our results may have to our choice of 
observations. We return to these topics in more detail in the Discussion 
section. 

Fig. 2. Bottom temperature locations used for comparing the CUGN and 
Newport Line (black X’s) to nearby GLORYS (red dots) and CCSRA (blue dots) 
grid points in Fig. 12. The comparisons are conducted as follows: the nearest 
reanalysis grid point where the bottom is deeper than at the observed location is 
selected (dashed line connect the observed and reanalysis data locations), then 
the temperatures are interpolated from the reanalyses bottom depth to the 
observed bottom depth. Comparisons are made at depths of 30 m, 70 m and 
410 m in Monterey Bay and at 70 m, 130 m and 300 m off Pt. Conception, and 
at 25 m, 55 m, 75 m on the Newport line. Comparisons between CCSRA and 
CUGN at 410 m in Monterey Bay were omitted since the nearest deeper CCSRA 
grid points were too far away for a reasonable comparison. The ORAS5 rean
alysis was omitted since it is too coarse for this comparison to be meaningful. 
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3. Results 

3.1. Sea surface temperature 

a) Comparisons with OISST 
The annual mean SST pattern in OISST features a tongue of cool SSTs 

along the U.S. west coast, which is associated with the southward 
advection of cold water from high-latitudes by the California Current, as 
well as broadscale upwelling driven by the climatological northerly 
winds (Fig. 3a). Overall, the reanalyses show modest SST biases relative 
to the annual mean OISST data (Fig. 3b-d). Additionally, each reanalysis 
exhibits a similar bias pattern: cool along the U.S. west coast and warm 
offshore. Among the three reanalyses, GLORYS shows the largest warm 
SST biases (~0.5̊C) from 32̊N-42̊N, while the U.S. west coast SST biases 
in ORAS5 and CCSRA are generally insignificant. 

The greatest SST variability, as indicated by the standard deviation of 
the monthly means in OISST, is adjacent to the coast with regions of 
somewhat enhanced variability extending farther offshore of the Cali
fornia coast (Fig. 3e). Additionally, there are areas of higher variability 
along the southern half of Oregon and portions of California, including 
between Pt. Arena and Pt. Reyes (~38◦N) and in the vicinity of Pt. 
Conception and the Channel Islands (~34◦N). While the nearshore peak 
in the SST standard deviation is likely associated with upwelling driven 
SST changes, the offshore extension of elevated variability may be 
associated with enhanced eddy activity in this region (see also Section 
3.7). The monthly mean SST anomalies in each reanalysis are highly 
correlated with the corresponding SST anomalies from OISST (Fig. 3f-h), 
indicating that the reanalyses credibly reproduce the regional structure 

of the observed variability. This is further supported by the high pattern 
correlations between the OISST monthly standard deviation pattern and 
those from the reanalyses (Fig. S3e-h). Among the reanalyses, CCSRA 
most closely resembles OISST, featuring the highest point-by-point 
correlations with the observed monthly mean SST anomalies and the 
highest pattern correlation with the observed monthly standard devia
tion pattern. In comparison, ORAS5 exhibits less variability than OISST 
over most of the domain and GLORYS SST variability is generally greater 
than that in OISST, particularly in the southwest portion of the domain 
(Fig. S3f-g). These differences contribute to the overall lower (yet still 
significant) point-by-point correlations between ORAS5/GLORYS and 
the OISST monthly mean SST anomalies (Fig. 3f-g). 

b) Comparisons with nearshore stations 
The reanalyses also generally compare well with SST data from six 

nearshore stations spanning the U.S. west coast (Figs. 4 and S4). At the 
northernmost stations (Stonewall; 44.7̊N and Charleston; 43.3̊N), 
CCSRA and GLORYS exhibit insignificant annual mean biases, while 
ORAS5 has a significant warm bias at Charleston. However, all three 
reanalyses show high monthly mean correlations and relatively small 
RMSE of ~0.25–0.4̊C when compared to station data at these latitudes. 
At Trinidad Beach (41.1̊N), GLORYS and ORAS5 exhibit significant cold 
biases. While CCSRA does not have a significant mean bias at this sta
tion, all three reanalyses show lower (yet still significant) monthly 
correlations, which also correspond to elevated RMSE values of 
~0.5–0.6̊C. The reanalyses compare most favorably at the Farallon 
Islands (37.7̊N), where they have the smallest biases, highest correla
tions, and lowest RMSE values of any of the stations compared here. The 
southern stations (Newport Beach; 33.6̊N and Scripps Pier; 32.9̊N) show 

Fig. 3. (a) Annual mean SST (̊C) pattern from OISST. (b)-(d) Annual mean SST bias patterns from the GLORYS, ORAS5 and CCSRA reanalyses, respectively. (e) 
Monthly mean standard deviation pattern (̊C) from OISST. (f)-(h) Anomaly correlation coefficients between monthly mean SST anomalies from OISST and each 
reanalyses. Significant biases at 95% confidence in the top row are denoted by green hatching. All monthly correlations reported in the bottom row are significant at 
95% confidence. 
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the largest differences among the reanalyses. For example, at Newport 
Beach, GLORYS exhibits a significant cold bias of about 1̊C, while 
ORAS5 and CCSRA show warm biases of ~0.8̊C and 1̊C, respectively. At 
the Scripps Pier, both ORAS5 and GLORYS show significant cold biases, 
while CCSRA does not have a significant bias. These potential reanalysis 
errors are further highlighted by overall lower monthly correlations and 
higher RMSE values at these southern stations, especially for GLORYS at 
Newport Beach. The cold biases in GLORYS at these southern latitudes 
may be due to enhanced upwelling rates. We will explore this possibility 
in more detail in Section 3.3a. 

3.2. Sea surface salinity 

a) Comparisons with OISSS 
The annual mean SSS pattern in OISSS features salinity values that 

decrease with latitude, reaching a minimum in the coastal regions of the 
Pacific Northwest, which is likely associated with increased freshwater 
fluxes from the Columbia River outflow at ~46̊N (Fig. 5a). Despite the 
high pattern correlations between the annual mean SSS in the reanalyses 
and the OISSS data (Fig. S5b-d), each of the reanalyses have significant 
mean SSS biases, particularly off the Oregon and Washington coast 
(Fig. 5b-d). The bias patterns in GLORYS and ORAS5 are similar, with 
mainly salty biases offshore north 45̊N and mainly fresh biases in a 
horseshoe pattern along the coast and extending offshore from 40̊N-50̊N. 
South of 40̊N, both GLORYS and ORAS5 have mostly insignificant bia
ses. In contrast, CCSRA has significant salty biases from 40̊N-50̊N and 
significant negative biases offshore south of 40̊N. The large biases in 
each of the reanalyses near the Columbia River outflow suggests unre
alistic freshwater forcing in this region. GLORYS and ORAS5 have 
potentially too much freshwater input, while the salty nearshore biases 
in CCSRA are consistent with its omission of freshwater sources (Neveu 

et al., 2016). 
Monthly SSS variability is relatively weak throughout the CCS, 

except near the Columbia River outflow where monthly standard de
viations reach as high as 0.35 PSU (Fig. 5e). The monthly mean SSS 
anomalies in GLORYS are highly correlated with the OISSS anomalies 
offshore and south of about 40̊N, but are not significantly correlated 
with the observations off the coast of Oregon and Washington (Fig. 5f). 
In comparison, ORAS5 has the highest overall correlations with the 
satellite data; however, it is less correlated along the coast from 30̊N- 
50̊N (Fig. 5g). The SSS anomalies in CCSRA are significantly correlated 
with OISSS south of 38̊N, but the correlations are insignificant nearly 
everywhere north of 38̊N (Fig. 5h). Overall, ORAS5 has the highest 
pattern correlation with the observed monthly mean standard deviation 
pattern (r = 0.84), while GLORYS and CCSRA have weaker pattern 
correlations of 0.77 and 0.60, respectively (Fig. S5e-h). 

3.3. Water column temperature 

a) Comparisons with glider lines 
When compared to annual mean temperature data from the CUGN, 

each of the three ocean reanalyses displays a different annual mean 
temperature bias pattern that is broadly consistent across the three 
different glider lines (Figs. 6 and S6). For example, GLORYS shows a 
nearshore significant warm bias centered at ~30 m depth, as well as a 
cold bias along the continental shelf at ~60–180 m depth at Monterey 
and Pt. Conception at the surface at Dana Pt. (Fig. 6d-f). The warm bias 
may be due to GLORYS having a slightly deeper nearshore mean ther
mocline than observed (Fig. S6a-f). Due to the strong vertical tempera
ture gradients found within the thermocline, even subtle shifts in its 
mean position can result in large model biases. The coastal cold biases 
are most significant at Pt. Conception and may be related to differences 

Fig. 4. (a) Annual mean SST bias values (̊C) from 
GLORYS (red), CCSRA (blue), and ORAS5 (grey) 
relative to the mean SST at each shore station 
(indicated by latitude). (b) As in (a), but for the 
anomaly correlation coefficient between monthly 
mean SST anomalies from each reanalyses and 
each shore station. (c) As in (a), but for the 
monthly root mean square error (RMSE; ̊C). Open 
circles in (a) indicate significant mean biases at 
95% confidence. Closed circles in (b) indicate 
significant correlations with 95% confidence.   
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in nearshore vertical transport rates, as indicated by the shallower 
isotherm slopes below ~90 m and within ~40 km of the coast in 
GLORYS compared to CUGN (Fig. S6b,e). The cold biases near the sur
face at Dana Pt. may be due to enhanced upwelling in GLORYS, as 
indicated by the more vertically tilted annual mean isotherms above 90 
m within 20 km of the coast. Enhanced upwelling at these latitudes may 
also explain the significant cold SST biases seen at Newport Beach and 
the Scripps Pier (Fig. 4a). At each glider line, ORAS5 shows significant 
warm temperature biases at all vertical levels within ~150–200 km of 
the coastline (Fig. 6g-i). These warm biases are likely the result of 
weaker overall upwelling rates in ORAS5, as indicated by the generally 
flatter nearshore mean isotherms when compared to observations 
(Fig. S6g-i). Weaker upwelling in ORAS5 may be due to the coarser 
resolution of its ocean model. Finally, CCSRA features significant warm 
biases at each glider line that extend offshore and slope upwards to
wards to the coast (Fig. 6j-l). These biases are related to a systematically 
deeper mean thermocline in CCSRA when compared to CUGN (Fig. S6j- 
l). Overall, the annual mean temperature in GLORYS has the lowest 
pattern root mean square error (RMSE) when compared to the CUGN 
data at each location (ranging from 0.17̊C to 0.21̊C), while ORAS5 tends 
to have the highest (ranging from 0.30̊C to 0.36̊C). 

All three reanalyses show high monthly mean correlations with the 
CUGN data above ~30 m at Monterey, above ~50 m at Pt. Conception, 
and above ~90 m at Dana Pt (Fig. 7). The correlations in each reanalysis 
are lower below these depths, with the exception of GLORYS at Mon
terey and Pt. Conception where there are high correlations offshore at all 
depths. Overall, GLORYS has the highest correlations with observations 
across each CUGN domain, while ORAS5 has the weakest. The different 
correlation patterns among reanalyses may be related to their different 
monthly mean standard deviation patterns when compared to 

observations (Fig. S6, shading). Overall, GLORYS and ORAS5 have 
similar pattern RMSE values with the observed temperature variability 
maps (ranging from 0.08̊C to 0.13̊C), while CCSRA has slightly higher 
RMSE values (ranging from 0.13̊C to 0.16̊C). 

b) Comparisons with Argo profiles 
All three reanalyses generally reproduce the timing and relative 

magnitude of CCLME subsurface temperature anomalies observed by 
Argo floats (Fig. 8), including major interannual warming events in 
2004–2006 and 2014–2016 related to El Niño and Northeast Pacific 
marine heatwaves (Amaya et al., 2016; Li et al., 2020) and cooling 
events in 2007–2009 related to La Niña (Okumura and Deser, 2010). The 
multi-year warming from 2014 to 2016 seen in observations and the 
reanalyses is most pronounced and consistent in the CLME and SLME, 
likely due to the southward shift in large-scale anomalous atmospheric 
forcing associated with major marine heatwaves in the Northeast Pacific 
in late 2014 and early 2015 (Amaya et al., 2016). Argo measurements in 
the SLME also show resurgent warming in 2017–2018, which is gener
ally reproduced by GLORYS and ORAS5 (SLME is outside the CCSRA 
domain). Finally, there is evidence in the Argo record of downward 
propagating warm waters from the surface in 2014–2015 to 100–150 m 
in 2015–2016 (particularly in the CLME and SLME). These downward 
propagating anomalies are evident in each reanalysis, although the 
magnitude of the CLME anomalies during this period are overall weaker 
in CCSRA. 

While the ocean reanalyses generally have weaker temperature 
anomalies then those computed from Argo, the discrepancy is likely due 
to the relatively small number of Argo profile measurements in both 
depth and time that go into area averages (Figs. S1 and S2). Indeed, if we 
resample daily mean GLORYS vertical temperature data to the same 
time and depth locations as the Argo data, we find that agreement 

Fig. 5. As in Fig. 3, but for OISSS and reanalysis sea surface salinity (PSU).  
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between the two is greatly improved (Fig. S7). This result highlights an 
advantage of ocean reanalyses, which provide a uniform dataset in time 
and space, over in situ observations that can give a biased view of the 
ocean state due to under sampling (see Section 5 for a more detailed 
discussion). 

3.4. Water column salinity 

a) Comparisons with glider lines 
The reanalyses each exhibit salinity bias patterns that are broadly 

consistent across the different glider lines (Fig. 9). For example, GLORYS 
has significant fresh biases near the coast, which peak at the surface at 
Monterey and at ~60 m-90 m at Pt. Conception and Dana Pt. (Fig. 9d-f). 
In contrast, ORAS5 has significant salty biases mainly below 120 m 
along each glider line, with significant fresh biases near the surface at 
Monterey and Pt. Conception (Fig. 9g-i). Many of the fresh biases seen in 
GLORYS and ORAS5 may be associated with differences in vertical 
transport near the coast. For example, the CUGN data at Monterey shows 
annual mean isohalines of 33.1–33.5 PSU outcropping within ~200 km 
of the coastline, however, neither GLORYS nor ORAS5 show outcrop
ping isohalines beyond 33.2 PSU, resulting in fresh biases nearshore 
(Fig. S8). On the other hand, CCSRA has isohalines at Monterey that 
have a similar slope to observations, resulting in weaker biases 

nearshore. At Dana Pt., there is a layer of saltier water seen in the annual 
mean CUGN data from the surface to ~60 m within ~100 km of the 
coast (Fig. 9c). This shallow, salty water is not reproduced in any of the 
reanalyses, contributing to the fresh biases seen here in GLORYS and 
ORAS5 (Fig. S8, bottom row). Additionally, CCSRA has a systematically 
weaker and shallower halocline at all three glider lines than in the 
CUGN, resulting in positive significant salty biases that slope upwards 
from offshore to onshore and which overlie significant fresh biases at 
deeper depths (Fig. 9j-l and S8). 

In general, the monthly mean correlations between CUGN and 
reanalysis water column salinity are overall lower than the corre
sponding temperature correlations (comparing Figs. 7 and 10). The 
lower overall salinity correlations are consistent with the large differ
ences seen in the monthly mean standard deviation patterns between the 
CUGN and reanalysis data (Fig. S8). Despite these clear deficiencies, the 
reanalyses do have regions of significant salinity anomaly correlations 
along each glider line, with the highest correlations for all three rean
alyses found at Dana Pt (Fig. 10, bottom row). In this region, each 
reanalysis shows significant correlations throughout the water column, 
with the highest values near the surface for GLORYS and ORAS5 and 
from 90 to 120 m for CCSRA. Further, both GLORYS and CCSRA show 
significant (albeit weaker) correlations with CUGN salinity data 
throughout the water column at Monterey and Pt. Conception, with the 

Fig. 6. (a)-(c) Annual mean temperature (̊C) along CUGN Line 66 (Monterey), Line 80 (Pt. Conception), and Line 90 (Dana Pt.), respectively. (d)-(l) Annual mean 
temperature bias (̊C) along each glider line in (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(l) CCSRA. Gray hatching indicates a significant mean bias with 95% confidence. 
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Fig. 7. (a)-(c) Monthly mean temperature standard deviation (̊C) along CUGN Line 66 (Monterey), Line 80 (Pt. Conception), and Line 90 (Dana Pt.), respectively. (d)- 
(l) Anomaly correlation coefficients of monthly mean temperature data from CUGN with (d)-(f) GLORYS, (g)-(i) ORAS5, and (j)-(l) CCSRA. White stipples indicate an 
insignificant correlation with 95% confidence. 

Fig. 8. Depth/time cross-sections of monthly mean water temperature anomalies (̊C) averaged in three CCLME sub-regions–the North LME (NLME; top row), Central 
LME (CLME; middle row), and South LME (SLME; bottom row). Data are from (a)-(c) Argo profiles binned in the vertical in 20 m bins, (d)-(f) GLORYS, (g)-(i) ORAS5, 
and (j)-(k) CCSRA. Note the reanalysis data feature their native vertical resolution. See Methods for more details. 
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highest correlations in GLORYS found near the surface west of 120̊W and 
the highest correlations in CCSRA found below ~50 m along each line 
(Fig. 10, top and middle rows). In contrast, ORAS5 has noticeably 
weaker correlations at Monterey and Pt. Conception, with insignificant 
values throughout much of the water column (Fig. 10g-h). However, 
ORAS5 does have significant correlations near the surface along the 
glider lines and at depth within ~40 km of the coast. 

b) Comparisons with Argo profiles 
The reanalyses broadly reproduce the timing of major interannual 

salinity anomalies observed by Argo profiles (Fig. 11). For example, in 
the NMLE and CLME there was a period of fresher than normal condi
tions from the surface to ~150 m from 2003 to 2006, which is seen in 
GLORYS and ORAS5, but less so in CCSRA. This period of fresh anom
alies also encompasses the SLME in GLORYS and ORAS5, but there are 
very few Argo profiles during this time with which to validate the 
reanalyses (Fig. S2c). Additionally, Argo profiles show a period of salty 
anomalies beginning in ~2016 in each sub-region that is broadly 
captured by the reanalyses. Despite these similarities, there are some 
important differences between the Argo salinity data and the reanalyses. 
For example, Argo shows fresh anomalies in 2009–2010 and 2013–2015 
in the NLME, which are mostly absent in the reanalyses. There are also 
larger and more persistent salty anomalies in GLORYS and ORAS5 in the 
SLME from 2014 to 2016 than seen in Argo. While GLORYS and ORAS5 
show larger anomalies during this time period, the Argo profiles tend to 

have larger salinity anomalies overall, which as discussed previously is 
likely related to the limited number of individual Argo profiles in these 
regions (Figs. S1-S2, S7). 

3.5. Bottom temperature 

a) Comparisons with the CUGN and Newport Line 
Both GLORYS and CCSRA produce monthly mean bottom tempera

ture data that are significantly correlated with nearby CUGN values at 
the Monterey Bay (Line 66) and Pt. Conception (Line 80) locations as 
well as data taken from CTD casts along the Newport Line (Fig. 12; note 
ORAS5 is omitted from this comparison due to its inability to resolve the 
shelf). For the CUGN lines, both the GLORYS and CCSRA bottom depth 
correlations decrease with depth, while the reanalyses have peak cor
relations with the Newport Line data at 55 m depth. At CUGN Line 66, 
GLORYS and CCSRA have similar correlations with observations. 
However, at CUGN Line 80 and along the Newport Line, GLORYS has 
noticeably higher correlations. 

b) Comparisons with bottom trawl data 
While the stratified random sampling pattern of the trawl data pre

cludes the generation of climatologies, it does provide much more 
thorough spatial coverage from which we can assess the ability of 
reanalyses to reproduce mean patterns of bottom temperature. As 
described in the methods (Section 2.2c), there are discrepancies between 

Fig. 9. As in Fig. 6, but for CUGN and reanalysis water column salinity (PSU).  
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reanalysis bottom depth and true bottom depth, and consequently there 
is considerable scatter when comparing the observed and reanalysis 
bottom temperature at the same location. Despite these discrepancies, 
there is good agreement between the reanalyses (especially GLORYS) 
and the observations (Pearson correlation coefficients r = 0.76 and 0.92 
for CCSRA and GLORYS, respectively; Fig. 13). This effect is less 

pronounced in GLORYS than in CCSRA, as the terrain-following coor
dinate system used in the latter requires additional bathymetric 
smoothing that introduces greater differences between modeled and 
true bottom depth. However, when bottom depth differences are 
accounted for (i.e., reanalysis temperature is taken from the depth of the 
trawl measurement), both GLORYS and CCSRA exhibit strong fidelity to 

Fig. 10. As in Fig. 7, but for CUGN and reanalysis water column salinity (PSU).  

Fig. 11. As in Fig. 8, but for Argo and reanalysis salinity anomalies (PSU).  
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observed bottom temperatures (r = 0.97 and 0.96, respectively). Pat
terns of mean bias differ between the two reanalyses, with CCSRA 
tending to be too warm at the coldest temperatures and too cold at the 
warmest temperatures, while GLORYS is slightly warm at high tem
peratures (Fig. 13). 

3.6. Sea surface height 

Coastal sea level measurements from tide gauges and reanalyses 
exhibit large monthly and interannual fluctuations that are likely 

associated with local wind forcing and propagating coastally trapped 
waves (Amaya et al., 2022) that may be stochastically forced or driven 
by major ENSO events, including the 1997–1998 and 2015–2016 El 
Niño events (Figs. S9-S11). The SSH anomalies in each reanalysis are 
significantly correlated with the tide gauge measurements at every 
location (Fig. 14a). However, GLORYS produces the highest correlation 
values at every station except the Humboldt Bay tide gauge at ~ 40̊N. 
Latitudinal patterns in RMSE roughly mirror those in the correlation, 
with the lowest RMSEs in the south of the domain and larger values in 
the north (Fig. 14b). GLORYS tends to have the lowest RMSE values, 

Fig. 12. Monthly mean bottom temperature anomaly (̊C) timeseries at select locations along (a)-(c) CUGN Line 66, (d)-(f) CUGN Line 80, and (g)-(i) the Newport 
Line. In each panel the observational data are in black and data from the nearest GLORYS and CCSRA grid cells are in red and blue, respectively. See Fig. 2 for precise 
data locations. Anomaly correlation coefficients between the observations and each reanalyses are shown in each panel. Asterisks indicate significant correlations 
with 95% confidence. 
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while ORAS5 has the highest values north of 36̊N. 

3.7. Eddy kinetic energy 

The annual mean EKE pattern from AVISO data shows a band of 
elevated values that roughly follow the North American coastline from 
20̊N-45̊N, with peak values centered offshore in the CCLME around 37̊N 
(Figs. 15 and S12). In comparison, GLORYS has a significant positive 
bias throughout much of the CCLME from 30̊N-40̊N, while ORAS5 has a 
significant negative bias throughout the entire domain. The EKE bias 
pattern in CCSRA exhibits significant positive biases near the edges of 
the regional model domain, likely associated with the lateral boundary 
conditions used to force the regional model, however, CCSRA tends to 
have the smallest biases in the main EKE region (Fig. 15b-d). When 

considering monthly EKE variability, we see that both GLORYS and 
CCSRA are significantly correlated with the observations throughout 
their respective domains, while ORAS5 generally has insignificant cor
relations (Fig. 15e-h). 

The strong negative EKE biases and low correlations seen in ORAS5 
may be due, in part, to the model’s coarse resolution (0.25̊), which is not 
eddy resolving. Additionally, although ORAS5 does assimilate satellite 
altimetry data, these observations are rejected from the assimilation 
scheme in the nearshore environment (i.e., when the ocean bottom 
depth is shallower than 500 m) and are strongly down weighted within 
~800 km of the coastline (Zuo et al. 2019). As a result, the mean 
structure and variability of the mesoscale features are generally not 
captured in ORAS5. It is also important to note that our comparisons are 
somewhat hampered by the resolution of the gridded AVISO data. The 

Fig. 13. Comparison of CCSRA and GLORYS with bottom temperature data from the west coast groundfish bottom trawl survey. (left) maps indicate differences 
between trawl depths and model bottom depths at the same location. (right) scatter plots of observed bottom temperatures compared to reanalysis temperatures 
extracted two ways: (1) at the model bottom (gray), which may be a substantially different depth from the trawl depth, and (2) at the depth of trawl sample (blue). 
See Methods for more detail. 
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higher EKE values in both GLORYS and CCSRA are due to their higher 
horizontal resolutions, which allow their respective ocean models to 
simulate finer scale circulation features, thus increasing the level of eddy 
activity relative to AVISO. Therefore, in reality (where ocean currents 
are not limited by horizontal grid resolution), it is likely that the 
magnitude of EKE in the CCS is actually closer to that seen in the high- 
resolution reanalyses. 

4. Summary 

In this study, we compared the output from three high-resolution 
ocean reanalysis products—the 1/4̊ ORAS5, the 1/12̊ GLORYS, and 
the 1/10̊ CCSRA—to a variety of in situ and satellite-derived observa
tions in the CCLME. For surface temperature, we found that all three 
analyses were generally able to capture the observed mean state and 
monthly variability as measured by satellite observations and coastal 
station data over the last several decades. In particular, when comparing 
to unassimilated SST data from six stations along the U.S. west coast, we 
showed that the nearest grid cells in each reanalysis were highly 
correlated with the observations, with typical correlation values 
exceeding 0.80 and even reaching as high as 0.97 at some stations 
(Fig. 4). Comparing across the reanalyses, we found that CCSRA has the 
most accurate depiction of monthly SST throughout the CCLME, while 
GLORYS and ORAS5, respectively, slightly overestimated and under
estimated the larger-scale SST variability (Figs. 3 and S3). For sea sur
face salinity, we found significant biases in all three reanalyses near the 
outflow of the Columbia River at 46̊N (Figs. 5 and S5), suggesting an 
influence of unrealistic (or missing) freshwater forcing in the models at 
this location. 

Comparisons to different measures of water column temperature 
throughout the CCS saw large differences among the ocean reanalyses. 

For example, each reanalysis depicted significant warm mean temper
ature biases relative to CUGN data (Fig. 6). These biases were the result 
of differences in the mean position of the thermocline (as in GLORYS and 
CCSRA) or differences in vertical transport rates (as in ORAS5). Despite 
these mean biases, monthly mean temperature data from each reanalysis 
were significantly correlated with the CUGN data above ~50 m. How
ever, GLORYS showed a clear advantage over ORAS5 and CCSRA with 
the highest correlations throughout the water column (Fig. 7). Com
parisons to CUGN salinity data were less favorable among the reanalyses 
(Figs. 9 and 10), with each reanalysis showing large biases related to 
differences in vertical transport rates (as in GLORYS and ORAS5) and 
differences in the mean position of the halocline (as in CCSRA), as well 
as weaker overall point-by-point correlations than with the corre
sponding temperature observations. All three reanalyses credibly 
reproduce the large-scale subsurface temperature and salinity anomalies 
measured by Argo profiles, including the downward propagation of 
recent warm anomalies associated with the 2015–2016 marine heat
wave and the recent salty conditions throughout the CCS after 2016 
(Figs. 8 and 11). 

When comparing bottom temperature measurements from the 
reanalyses to observations, GLORYS was the best performer. In partic
ular, GLORYS consistently had the highest correlations with monthly 
mean bottom temperature estimates from the CUGN and the Newport 
Line (Fig. 12). Additionally, due to GLORYS having more realistic ba
thymetry than CCSRA, it also had bottom temperatures that were much 
more highly correlated with bottom temperature measurements from 
nearby trawls (Fig. 13). However, accounting for differences in bottom 
depth between the trawl measurements and the reanalysis led to marked 
improvements for CCSRA. Overall, the favorable comparisons between 
the reanalyses and various bottom temperature observations are 
impressive given the difficulty of comparing pointwise measurements on 

Fig. 14. As in Fig. 4b and 4c, but for SSH anomaly comparisons between the nine tide gauges and the nearest grid cells in GLORYS (blue), ORAS5 (red), and 
CCSRA (green). 
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the steep bathymetry along the west coast. 
The reanalyses also showed impressive correlations with monthly 

mean SSH measurements from nine coastal tide gauges, producing sig
nificant correlation values ranging from 0.67 to 0.91 and accurately 
depicted major El Niño-driven sea level changes along the U.S. west 
coast (Fig. 14 and S9-S11). However, CCSRA and GLORYS continued to 
stand out, producing lower overall RMSE values at each tide gauge 
location when compared to ORAS5. Finally, both GLORYS and CCSRA 
produced patterns of ocean mesoscale activity (i.e., EKE) that compared 
well to AVISO satellite measurements, while ORAS5 underestimated the 
intensity of EKE throughout the CCS due to its coarser resolution and the 
decision to down weight satellite altimetry data near coastlines during 
the assimilation process (Fig. 15). 

5. Discussion 

5.1. Choosing a reanalysis for California Current ecosystem science 

As is often the case when evaluating reanalyses (Balmaseda et al., 
2015; Storto et al., 2019), the “best” product to use depends on the 
application. However, based on the results above, we can offer some 
general guidelines as well as some more targeted examples. 

5.1.1. General considerations 
Model resolution is an obvious consideration when choosing a 

reanalysis. For research into coastal ocean processes along the U.S. west 
coast, the higher resolution of GLORYS or CCSRA clearly provides 
enhanced fidelity of the nearshore environment including surface and 
bottom temperature, sea level variability, mean coastal upwelling, and 
the representation of coastally trapped waves (Amaya et al., 2022). 
However, given the small scale of many of the eddies off the U.S. west 
coast, Neveu et al. (2016) concluded that the CCSRA horizontal reso
lution was insufficient to fully represent the observed EKE variability. 

Throughout the broader CCLME, ORAS5 is generally comparable to 
GLORYS and CCSRA (with the exception of its poorer representation of 
EKE), so studies interested in larger-scale ocean variability may prefer 
ORAS5 with its coarser resolution and smaller overall storage 
requirements. 

Another clear consideration is the spatiotemporal coverage of a 
particular analysis. For example, GLORYS only provides data starting in 
1993, so studies requiring output prior to 1993 would be limited to 
either CCSRA or ORAS5. Similarly, the CCSRA domain limits analysis to 
the CCS region, whereas the global ocean models used by GLORYS and 
ORAS5 do not have such geographical restrictions. As a result, studies 
utilizing GLORYS and ORAS5 are able to investigate the relationship 
between the CCS and remote regions (e.g., tropical Pacific) within the 
same reanalysis dataset. In general, the resolution and performance of 
GLORYS and CCSRA will make them preferable to ORAS5 unless the 
application requires both global coverage and a historical record 
extending earlier than 1993, or if the additional computing/storage 
burden incurred by using a higher resolution reanalysis is prohibitive. 

Finally, potential users of these products should note that they may 
all be quite limited in certain respects. In our analysis, a chief example is 
the relatively large salinity errors in each reanalyses when compared to 
observations. In particular, the large mean salinity biases and weaker 
overall monthly mean correlations may limit the utility of the reanalysis 
salinity data in the CCS, especially in the nearshore environment and at 
higher latitudes near the Oregon and Washington border. Indeed, to the 
best of our knowledge, none of the reanalyses considered here explicitly 
represent freshwater inputs (i.e., rivers) to the California Current System 
at all. Thus, they are not well tailored to applications that are very 
sensitive to that aspect of the oceanography, though the effects of 
freshwater inputs will be captured indirectly by assimilation of tem
perature and salinity observations in the coastal ocean. We do note, 
however, that our salinity comparisons were limited to relatively short 
periods (2012–2018 for OISSS, 2007–2018 for CUGN, and 2002–2018 

Fig. 15. (a) Annual mean geostrophic Eddy Kinetic Energy (EKE; cm2 s− 2) based on SSH anomalies from AVISO satellite observations. (b)-(d) Annual mean EKE 
biases in GLORYS, ORAS5, and CCSRA, respectively. (e) Monthly mean EKE standard deviation in AVISO. (f)-(h) Anomaly correlation coefficients between monthly 
mean EKE values from AVISO and each reanalyses. Stipples in (b)-(d) indicate a significant mean bias with 95% confidence. Stipples in (f)-(h) indicate an insig
nificant correlation with 95% confidence. 
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for Argo) and that satellite salinity data have known biases and errors 
(particularly at higher latitudes), which may influence our comparisons 
(e.g., Melnichenko et al., 2014). Therefore, it is possible that the 
apparent deficiencies seen in the reanalysis salinity data will improve as 
satellite salinity measurements increase in number and accuracy. 

5.1.2. Targeted applications 
The general guidelines offered above can be further tailored in the 

context of specific applications, which we demonstrate here by drawing 
on a range of CCS case studies. For example, in recent years ocean 
reanalyses have been increasingly relied upon to generate ecologically- 
relevant oceanographic indices. The Temperature Observations to Avoid 
Loggerheads (TOTAL; Welch et al., 2019) tool tracks the risk of Log
gerhead Turtle bycatch in California’s drift gillnet fishery based on SST 
anomalies in the Southern California Bight. In summers following 
persistent warm SST anomalies, temporary closures can be enacted. In 
this case, CCSRA is likely the most attractive reanalysis due its ability to 
capture the mean and variability of SST anomalies in the region, and its 
long record that provides a more robust assessment of historical vari
ability, especially related to ENSO events. The Habitat Compression 
Index (HCI; Schroeder et al., 2022), which tracks the presence of cool- 
water habitat nearshore, has been related to regional ecosystem shifts 
and whale entanglement risk. Again, the fidelity of CCSRA for fine-scale 
nearshore SST variability, as well the relatively high resolution of its 
wind forcing and associated representation of coastal upwelling, make it 
well suited to this application. 

Moving to more complex ecological models, additional consider
ations will drive the choice of reanalysis. As described above, CCSRA is a 
good choice for surface-oriented analyses, and has been successfully 
applied in species distribution models focused on the near-surface 
environment (e.g., Becker et al., 2016). In contrast, GLORYS more 
realistically captures the bathymetry of the relatively narrow shelf off 
the US west coast and generally does a better job reproducing observed 
bottom temperature variability; therefore, it is likely a better choice for 
species distribution models of benthic organisms such as groundfish (e. 
g., Ward et al., 2022), provided the shorter historical record is adequate. 
Issues of internal consistency of reanalyses can also have different im
pacts depending on the nature of ecological model employed. Changes 
in the configuration of CCSRA, between its 1980–2010 historical run 
and an extension starting in 2011, introduce inconsistencies in some 
fields. For aspects of the ocean circulation that are well constrained by 
observations or surface forcing (e.g., SST, SSH, upwelling), these in
consistences are of less concern. But some ecological models rely on 
hydrographic properties that are not well constrained by observations 
and are more sensitive to changes in model configuration. For example, 
life-stage specific recruitment models have been developed for several 
groundfish species in the CCS (Haltuch et al., 2020; Tolimieri et al., 
2018) based on mixed layer depth, ocean temperature, and alongshore 
and cross-shore currents in different vertical and horizontal sectors of 
the water column. For the subsurface alongshore and cross-shore cur
rents in particular, the 1980–2010 and post-2010 versions of CCSRA 
cannot be combined as a consistent reanalysis. In this case GLORYS 
would offer a self-consistent alternative, and while data limitations 
preclude direct assessment of subsurface currents, the subsurface 
structure (temperature and salinity) in GLORYS is generally very good 
relative to the other reanalyses. 

5.2. Sources of differences between reanalyses 

It is important to consider what factors may lead to one reanalysis 
comparing more favorably to observations than another reanalysis, 
particularly if those observations are assimilated by each of the rean
alyses (e.g., Argo data is assimilated in all three reanalyses analyzed 
here). As discussed previously, differences in model resolution likely 
plays a key role in producing different reanalysis solutions, especially in 
the nearshore coastal region. Additionally, the resolution and fidelity of 

the atmospheric forcing for each of the ocean models may play a role. 
Different data assimilation schemes (e.g., 3D-Var versus 4D-Var) and 
different subgrid parametrizations may also impact how reanalyses 
compare to observations. For example, the underestimation of sea level 
variance in ORAS5 is partly due to suboptimal parameter specifications 
for observation errors and data sampling (Zuo et al. 2019). However, it is 
difficult to assess the sensitivity of reanalysis errors to these model 
design choices without delving deeper into the raw model forcing files or 
(in some cases) the actual model code, neither of which are readily 
available to the average user of these reanalyses. Therefore, deciding 
which ocean reanalysis is most appropriate for a given application 
should be based on which physical processes are of interest and what 
computational resources are available to the user. 

5.3. Considerations for comparing reanalyses and observations 

In addition to the CCS-specific results, our analysis further highlights 
several important considerations that are generally applicable when 
comparing raw and/or post-processed observations to reanalysis prod
ucts. A critical factor for why reanalyses may differ from each other and 
from nature is the change in the number and types of data that are 
assimilated over time. Inclusion of new sources of data can lead to dis
continuities, while the lack of data, especially early in the record, 
enhance the contribution of model bias to reanalysis errors. For 
example, Lellouche et al. (2021) noted that salinity coverage by ARGO 
was insufficient to constrain model error prior to 2014 in GLORYS. 
Temporal changes in atmospheric reanalyses used as boundary condi
tions also can influence ocean reanalyses. The horizontal resolution of 
the SSTs used as boundary conditions in ERA-interim increased in 2002. 
This increased small-scale variability in the atmospheric reanalysis 
winds, which were transmitted to the ocean reanalyses that used ERA- 
interim, including the three reanalyses examined here; ORAS5 and 
CCSRA also used other atmospheric reanalyses during portions of their 
record, which likely contributed to discontinuities. Another change in 
the reanalyses occurred in 2004, with the inclusion of a large number of 
ARGO profiles. To accommodate the increase in the vertical profiles the 
time window in which the bias correction was performed was reduced 
by a third in GLORYS (Lellouche et al., 2021). This led to a rapid increase 
of EKE in GLORYS, which may have contributed to its excessive SST 
variability. 

In addition to temporal changes in the type and number of obser
vations, some mean biases may depend on the particular observational 
data used for comparisons, particularly if one is comparing to raw 
measurements that have been post-processed or smoothed onto a uni
form grid (such as OISST, OISSS, and AVISO data analyzed here) since 
the interpolation process may introduce statistical artifacts or biases 
(Reynolds et al., 2013; Reynolds & Chelton, 2010). Although, the 
weaknesses of interpolating raw observations onto a grid may be 
partially outweighed by the benefits of post-processing bias adjustments 
to satellite and ship observations to compensate for platform differences 
and sensor biases over time (e.g., Banzon et al., 2016; Huang et al., 2021; 
Reynolds, 1993; Reynolds et al., 2007). Further, reanalysis data at any 
given grid cell represents the characteristics of a volume of water, while 
in situ measurements are often from single points and may therefore 
benefit from similar bias corrections for comparisons with model output 
(Chang et al., 2021). 

Additionally, the raw Argo profile measurements showed stronger 
temperature changes than those observed in any of the reanalyses, 
which may be surprising considering each reanalysis assimilates Argo. 
However, resampling GLORYS to match the Argo data produced much 
more consistent results (Fig. S7), indicating that apparent discrepancies 
are in fact largely due to sampling differences. Similarly, EKE values 
derived on the native GLORYS grid were much higher than the coarser 
AVISO gridded observations (Figs. 15 and S12), and it is possible that the 
real-world intensity of EKE may be closer to the values seen in GLORYS 
than in pure observations. For benthic conditions over the continental 
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shelf and slope, an important consideration is that the depth of the real 
ocean bottom can be significantly different than the depth of the nearest 
reanalysis grid cell. This depth difference leads to discrepancies between 
the observed and reanalysis bottom temperature, which are worse when 
the bathymetry is less realistic (i.e., compare CCSRA and GLORYS in 
Fig. 13). A more accurate representation of the bottom conditions can be 
obtained by using the reanalysis temperature at the depth of the real 
ocean bottom, even if it is not the bottom in the reanalysis. However, 
this extra analytical step is not trivial and requires obtaining the full 
water column temperature data from the reanalysis, rather than a single 
level. In general, differences between observations and reanalyses are 
greatly reduced by controlling for the sampling limitations presented by 
the observations. Indeed, if there were substantially more Argo profiles 
in the CCS or if the spatial footprint of satellite altimetry measurements 
was more similar to GLORYS or CCSRA, then the observations may begin 
to look more like the reanalyses. This suggests that even our best esti
mates of the “truth” can sometimes be limited by sampling frequency in 
time and space, and therefore, that the high-resolution reanalyses may 
provide a more realistic and more uniform representation of under
sampled ocean variables in the CCLME. 
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