
Validation of TOVS Path-P data during SHEBA

Axel J. Schweiger,1 Ronald W. Lindsay,1 Jennifer A. Francis,2 Jeff Key,3

Janet M. Intrieri,4 and Matthew D. Shupe5

Received 23 May 2000; revised 24 April 2001; accepted 6 November 2001; published 28 September 2002.

[1] Products from the TIROS-N Operational Vertical Sounder (TOVS) Polar Pathfinder
(Path-P) data set are compared with surface measurements and other satellite remote
sensing retrievals during the Surface Heat Balance of the Arctic Ocean (SHEBA) field
program (October 1997 to September 1998). The comparison provides estimates of
Path-P retrieval uncertainties. Results are placed in the context of the natural variability
and timescales of variability to allow potential users to judge the applicability of the
data set for their purpose. Results show temperature profiles to be accurate within 3 K,
total column precipitable water within 2 mm annually, and surface temperature within 3
K. Uncertainties in temperature retrieval are below ‘‘within-season’’ variability during
all times of the year. Uncertainties in water vapor retrieval during winter and summer
are slightly below observed variability in those seasons but are well below during
spring. Uncertainty in retrieved cloud fraction is highly dependent on the timescale of
observations. Cloud fractions from the surface and satellite are well correlated
(correlation coefficient > 0.7) at timescales greater than 4 days but show weaker
correlation at shorter timescales. Uncertainty in TOVS-retrieved cloud fraction is less
than 20% for 5-day averages. In winter, TOVS-retrieved cloud fractions are higher than
those reported in standard meteorological observations but match those derived from
lidar data. This supports the notion that standard meteorological observations may
underestimate cloudiness in winter. Cloud-top temperatures measured from the surface
(lidar/radar) are significantly different from those estimated using TOVS and Advanced
Very High Resolution Radiometer (AVHRR) radiances, which highlights the
fundamental and inherent dissimilarity between these two measurement
techniques. INDEX TERMS: 0320 Atmospheric Composition and Structure: Cloud physics and
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1. Introduction

[2] The TIROS-N Operational Vertical Sounder (TOVS)
Polar Pathfinder (Path-P) data set is a collection of surface
and atmospheric variables retrieved from the TOVS aboard
NOAA’s polar orbiting satellites. The data set covers the
period from 1979 to 1998 and is available for the Arctic

basin north of 60� latitude. It was designed to provide
validation and forcing data for climate process models and
information for the analysis of climate variability.
[3] The performance of general circulation models

(GCMs) in the polar regions has been rather poor [cf.
Gates et al., 1999]. Similarly, satellite-derived global data
sets have exhibited significant errors in the polar regions
[cf. Schweiger and Key, 1992]. The Surface Heat Balance
of the Arctic Ocean (SHEBA) experiment [Perovich et al.,
1999], which was conducted in the Beaufort Sea from
October 1997 to September 1998, was largely motivated
by these deficiencies. The research program is designed to
construct detailed models of relevant local physical pro-
cesses (process models) from SHEBA measurements,
which will then be used to develop simpler and more
realistic representations or parameterizations of those
processes for implementation in GCMs. Improvements
to high-latitude simulations by process models and GCMs
hinges on the ability to evaluate their performance on a

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C10, 8041, doi:10.1029/2000JC000453, 2002

1Applied Physics Laboratory/Polar Science Center, University of
Washington, Seattle, Washington, USA.

2Institute of Marine and Coastal Sciences, Rutgers University, New
Brunswick, New Jersey, USA.

3Office of Research and Applications, National Environmental Satellite,
Data, and Information Service, NOAA, University of Wisconsin, Madison,
Wisconsin, USA.

4NOAA/Environmental Technology Laboratory, Boulder, Colorado,
USA.

5Science and Technology Corporation, Hampden, Virginia, USA.

Copyright 2002 by the American Geophysical Union.
0148-0227/02/2000JC000453$09.00

SHE 17 - 1



basin-wide scale. SHEBA data provide unprecedented
opportunities to validate satellite retrieval algorithms and
products, which constitute the most promising sources of
information for model validation. Satellite products can
also be applied to evaluating basin-wide GCM output,
forcing stand-alone coupled ice-ocean models, and study-
ing variability of mechanisms governing climate pro-
cesses.
[4] Temperature and humidity profiles have been

retrieved operationally from TOVS radiances during the
past 20 years by NOAA. Most development and validation
efforts were focused on retrievals over ‘‘wet’’ oceans
where few radiosonde stations exists and, consequently,
where numerical weather forecast models must rely on the
assimilation of data from the TOVS system. Over the past
10 years several efforts have focused on the improvement
and validation of TOVS retrievals over ice-covered oceans
[cf. Claud et al., 1991; Francis, 1994; Koepken et al.,
1995]. Validation efforts have been limited to relatively
short field experiments, which precluded the evaluation of
TOVS products over an entire annual cycle. Remote
retrieval of temperature and humidity profiles is severely
hampered by clouds. Successful detection and removal of
their effects must be achieved before profiles can be
computed in cloudy areas. Retrieved cloud information
has consequently been viewed more as a secondary
product. Recently this perception has changed, and the
potential for estimating cloud fraction and height from
TOVS radiances has been recognized [cf. Stubenrauch et
al., 1999a, 1999b, 1999c; Francis, 1997]. The quality of
TOVS-based cloud retrievals over Arctic sea ice was
recently demonstrated through comparisons with meteoro-
logical observations from drifting ice stations [Schweiger
et al., 1999]. While these results are encouraging, we
recognize that the quality of conventional cloud observa-
tions during winter may be questionable owing to the
extended darkness. Data from upward-looking cloud radar
and lidar during SHEBA, therefore, represent an excellent
opportunity for more quantitative validation of satellite-
derived cloud products.
[5] In this paper we compare surface and remote sensing

data from the SHEBA experiment to variables from the
TOVS Path-P data set for the same period (October 1997 to
September 1998). We employ measurements obtained dur-
ing SHEBA that span a wide variety of sources and extend
over an entire annual cycle. Our goal is to provide estimates
of the uncertainties in the Path-P products, allowing other
researchers to judge whether a particular Path-P product is
suitable for their particular application. Although we do
provide possible explanations for discrepancies between
validation and retrieval data, our focus in this paper is to
provide uncertainty statistics. Research into specific causes
and potential improvements will be left for future inves-
tigations.

2. Approach

[6] Validation of satellite data with surface measure-
ments is inherently difficult. There is a mismatch in spatial
and temporal resolution, as well as in the fundamental
characteristics of the observations (e.g., viewing of clouds
from above and below). It is important, therefore, to keep

in mind that the ‘‘retrieval errors’’ presented in this paper
are more properly referred to as ‘‘retrieval uncertainties.’’
In our analyses we will use the term uncertainty. An
uncertainty of X denotes a root mean square (RMS)
difference between the Path-P retrieval and the observa-
tion. Assuming Gaussian distribution of the differences,
the uncertainty represents a one-standard-deviation like-
lihood (�70%) that any randomly selected comparison of
a satellite-derived value with an observation will be within
X of the measurement. We also present mean errors to
estimate possible biases in the data set. To quantify the
accuracy with which the variability is captured (which is
not evident from the RMS and mean errors) and to provide
users with information to aid in judging whether a product
is suitable for their application, we have included correla-
tions with validation data at varying timescales. In some
instances we compare expected variability in physical
processes to the uncertainties at a particular timescale, to
help users decide if their sought-after signal, e.g., a climate
parameter or anomaly pattern, will exceed the noise level
in the retrievals.
[7] To aid the reader, the observing system from which a

measurement is obtained is defined in the text upon first
mention, and a summary of data sources and their abbrevi-
ations is presented in Table 1.

3. Data Sources and Methodology

3.1. Path-P Data

3.1.1. Variables
[8] Table 2 lists the products contained in the Path-P data

set, which are retrieved from infrared and microwave
radiances measured by the TOVS instrument package.
The TOVS has flown continuously on NOAA polar-orbiting
satellites since 1978 and consists of three radiometer arrays:
the high-resolution infrared radiation sounder (HIRS),
microwave sounding unit (MSU), and stratospheric sound-
ing unit (SSU). Data from the SSU are not used. We employ
a modified version of the Improved Initialization Inversion
(‘‘3I’’) algorithm developed by the Atmospheric Radiation
Analysis group at the Laboratoire de Météorologie Dyna-
mique (LMD). The algorithm has evolved over time,
including modifications to improve results over snow and
ice surfaces [Francis, 1994]. Detailed descriptions of 3I can
be found in the studies of Chédin et al. [1985], Francis
[1994], Stubenrauch et al. [1996], and Scott et al. [1999].
Here we provide only a brief synopsis of the fundamental
steps in the algorithm.
3.1.1.1. Calibration
[9] MSU and HIRS level 1b data are calibrated using

the standard procedure outlined in the NOAA Polar
Orbiter Users Guide [Kidwell, 1998]. Calibration coeffi-
cients provided in the level 1b data stream are applied to
convert digital counts to brightness temperatures. Limb
corrections to account for variations in viewing angle and
the associated lifting of weighting functions and changes
in surface emissivity are applied to MSU channels. MSU
channel 1, which is particularly sensitive to surface emis-
sion over sea ice, is limb-corrected for atmospheric effects
only. The view-angle dependence of surface emissivity in
MSU channel 1 is particularly large over sea ice and is
addressed in a later processing step. The limb-correction
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procedure is adapted from the ITTP processing scheme
[Smith et al., 1985].
3.1.1.2. Interpolation of MSU Data and Grouping Into
Retrieval Boxes
[10] The MSU and HIRS sensors have nadir footprint

sizes of approximately 100 and 18 km, respectively. The 3I
processing scheme interpolates surrounding MSU fields-of-

view and groups HIRS pixels into 100-km retrieval boxes.
Because of the change in footprint size along the scan line, a
varying number of HIRS pixels are associated with each
retrieval box (see Figure 1).
3.1.1.3. Air Mass Determination
[11] To reduce the number of situations involved in the

first-guess search and to guide other algorithm branches,

Table 1. Frequently Used Abbreviations and Definitions

Variable Abbreviation Description of Variable

3I Improved Initialization Inversion algorithm
ARM Atmospheric Radiation Measurement Program (DOE)
AVHRR Advanced Very High Resolution Radiometer
CART Cloud and Radiation Testbed (ARM program)
CASPR Cloud and Surface Parameter Retrieval
C-LIDAR Cloud fraction derived from LIDAR cloud height retrieval data set by time averaging over 1 day.
C-METOBS Observation of cloud fraction by surface meteorological observer. Reported in eighths.
DABUL Depolarization and Backscatter Unattended Lidar
DELTA Differences (deltas) between modeled and observed TOVS brightness temperatures
ETL Environmental Technology Laboratory (NOAA, Boulder)
GLAS-H GPS/Loran Atmospheric Sonde Humidity
GLAS-T GPS/Loran Atmospheric Sonde Temperature
GCM General Circulation Model
HIRS High resolution Infrared Sounder
ICP Ice Crystal Precipitation
ISCCP International Satellite Cloud Climatology Project
ITPP International TOVS Processing Package
Level 1b Satellite data provided in orbital swath with calibration and geolocation information attached.
Level 2 Geophysical retrievals in orbital swath format
Level 3 Geophysical retrievals gridded to regular grid. Path-P is gridded using a simple drop-in-the-bucket binning scheme.
LMD Laboratoire Météorologie Dynamique
MMCR Millimeter Cloud Radar
MSU Microwave Sounding Unit
NOAA National Oceanic and Atmospheric Administration
NP North Pole drifting stations (former Soviet ice islands)
NWP Numerical Weather Prediction
Path-P TOVS Polar Pathfinder
SHEBA Surface Heat Balance of the Arctic
SPO SHEBA project office
RMS Root Mean Square (Error)
TB(s) Brightness Temperature(s)
Tc-CASPR Cloud-top temperature retrieved from AVHRR using the CASPR system
TEMP-2m Surface temperature measured at the SHEBA 20-m tower. Temperature measured at 2 m above surface.
TIGR Thermodynamic Initial Guess Retrieval library of atmospheric profiles
TOA Top of the Atmosphere
TOVS TIROS-N Operational Vertical Sounder
WMO World Meteorological Organization

Table 2. Path-P Variables

Parameter Name Description Units �RMS Error

TEMP temperature at 9 levels
(50, 70, 100, 300, 400, 500, 600,

700, 850, 900 mb)

K 3

SKTEMP surface skin temp K 3
WVAPOR precipitable water in 5 layers

(300–400, 400–500, 500–700,
700–850, 850–surface)

mm 30%

FCLD effective cloud fraction (eN) % 30
HIRS_CLDY % cloudy HIRS pixels % 20
CLTEMP cloud-top temperature K TBD
CLPRESS cloud-top pressure mbar TBD
EMISS surface emissivity @ 50 GHz 5%
PBLSTRAT bulk PBL stratification K 5
Cg geostrophic drag coeff. 10%
ALPHA wind turning angle deg 20
ZANGLE average view angle deg
ISICE surface type
PRESS surface pressure (NCEP) mbar
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each retrieval box is associated with a particular air mass,
based on observed brightness temperatures in channels that
are not affected by clouds (MSU 2–4 and HIRS channels
with weighting function peaks above cloud tops).
3.1.1.4. Cloud Tests
[12] A series of cloud tests is performed to determine if

individual retrieval boxes are clear, partially cloudy, or
overcast. All cloud tests are spectral and involve operations
on single or multiple channels in the visible, IR and micro-
wave regions. Cloud tests have been modified since the
original implementation of 3I to improve the cloud detection
over polar surfaces [Francis, 1994]. Our current version
employs the cloud tests detailed by Stubenrauch et al.
[1999a] and Scott et al. [1999].
3.1.1.5. Temperature Profile
[13] Prior to temperature retrieval HIRS channels conta-

minated with clouds are ‘‘cleared.’’ Cloud clearing is based
on regressions using combinations of microwave ‘‘sister’’
channels. The channels have similar weighting function as
the corresponding HIRS channels (signal originates from the
same portion of the atmosphere) but are not affected by
clouds. Cloud clearing removes the effect of clouds in the
HIRS channels and thus simulates radiances as if there were
no clouds present. Cloud-cleared radiances are then used to
search a library of profiles for a first-guess solution. This
library, called the Thermodynamic Initial Guess Retrieval
(TIGR) data set, contains 1761 unique temperature profiles
selected from a global collection of over 150,000, and is
searched to identify the 10 closest profiles using a proximity
criterion based on the brightness temperature differences
between TIGR profiles and observed TBs for a subset of
channels. The average of these profiles is then used in
combination with precomputed transmission functions and
brightness temperature covariance matrices to retrieve the

final temperature profile. The initial guess and covariances
provide constraints for the least-squares solution to the
underdetermined retrieval problem [cf. Rodgers, 1976].
3.1.1.6. Humidity
[14] Following the temperature retrieval, cloud parame-

ters are determined as described below. For partially
cloudy boxes (at least one clear HIRS pixel) retrievals
are performed for the clear HIRS pixels. For overcast
retrieval boxes, (all HIRS pixels cloudy) retrieved cloud
parameters are used to ‘‘clear’’ channels sensitive to
changes in atmospheric water vapor. Only retrieval boxes
with effective cloud fractions of less than 90% are used in
the subsequent retrieval of surface temperature and
humidity. The procedure for the retrieval of humidity is
analogous to the retrieval of temperature (least-squares
solution constrained by a first guess). In the latest version
of the ‘‘native’’ 3I system, the least-squares solution for
water vapor retrieval was replaced with a neural network-
based (NN) retrieval system [Chaboureau et al., 1998].
Following some comparisons that showed that the NN
solution had substantial biases in the polar regions, we
retained the original retrieval method for generating Path-P
products.
3.1.1.7. Surface Temperature
[15] Surface temperature is retrieved using a variety of

methods depending on whether the retrieval box is classified
as clear, partly cloudy, or overcast, and whether it is located
over land, open ocean, or sea ice. For clear and partly cloudy
retrieval boxes, a combination of HIRS window channels
(channels 8 (11.1 mm), 18 (4.00 mm) and 19 (3.7 mm)) is used
for the clear HIRS pixels within the box. Completely over-
cast boxes (all HIRS pixels have some cloud) are ‘‘cloud-
cleared,’’ and a simultaneous retrieval of surface temper-
ature and humidity is performed using the cloud-cleared

Figure 1. Grouping of MSU and HIRS footprints into 100-km retrieval boxes. From the work of
Chédin et al. [1985]. Box (heavy lines) represents a sample grouping of HIRS and MSU fields-of-view
into a 3I retrieval box.
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radiances. This method is only applied in boxes where the
effective cloud fraction is less than 90%. The method based
on MSU-2 correlations described by Francis [1994] is no
longer used.
3.1.1.8. Cloud Fraction and Cloud Height
[16] The Path-P data set includes three variables describ-

ing cloud conditions. HIRS_CLDY is simply the fraction of
HIRS pixels within a retrieval box that have been labeled
cloudy through the application of 9 cloud tests. This
variable is equivalent to the cloud fraction commonly
retrieved from satellite imagers (e.g., AVHRR). Because
of the relatively low resolution of TOVS sensors, another
variable is commonly retrieved in the atmospheric sounding
community—the ‘‘effective cloud fraction’’ (Path-P variable
FCLD, but commonly abbreviated as Ne) is defined as:

Ne pk ; nið Þ ¼ Im ni; qð Þ � Iclr ni; qð Þ
Icld pk ; ni; qð Þ � Iclr ni; qð Þ ð1Þ

where N is the cloud fraction, e the cloud emissivity, and q
the viewing zenith angle. Im is the measured radiance in
channel i, Iclr the corresponding retrieved clear sky radiance
and Icld is a modeled radiance for a blackbody cloud with e
= 1 located at pressure level pk. Ne cannot be separated in
this formulation. This method is a minimum residual or
radiance difference technique because Ne and cloud-top
height pk are found simultaneously by minimizing the
difference between observed and calculated radiances in a
number of channels. A weighted c2 technique which takes
into account observed variances at different pressure levels
and channels [Stubenrauch et al., 1999b; Eyre and Menzel,
1989] is used to solve for Ne and pk. The weighted c2

removes the high biases in cloud-top height retrieval arising
from the smaller differences between radiances from clear
and cloudy situations in low-peaking HIRS channels. The
technique appears particularly applicable in the Arctic
where low clouds predominate.
3.1.2. Calibration Corrections (DELTAs)
[17] TOVS level 1b data are calibrated using the standard

calibration procedure described in the NOAA Polar Orbiter
Users Guides [Kidwell, 1998]. In addition, empirical correc-
tions were applied to the calibrated brightness temperatures.
These corrections (also known as DELTAs) are calculated
from the differences between observed and modeled bright-
ness temperatures for a large set of global radiosonde/TOVS
match-ups. They are meant to reduce the effects of sensor
drift and orbital decay, as well as to correct biases in the
forward radiative transfer model used to generate the TIGR
database. DELTAs used in Path-P were provided by the
original algorithm developers at LMD, as these calculations
require a large number of cloud-free radiosonde satellite
match-ups. For this study DELTAs from NOAA-11 were
applied to NOAA-14 because NOAA-14 DELTAs are not
yet available. Any remaining calibration errors are contained
in the uncertainties reported in our validation statistics. To
avoid spatial discontinuities caused by satellite intercalibra-
tion differences (see below), data from only one satellite are
used to generate Path-P products at any time (i.e., if two
satellites are active, only one is used). Owing to orbit
convergence at the poles, near complete coverage can be
obtained using the 14 orbits by one satellite. Data from the
NOAA-14 satellite were used for the SHEBA period.

3.1.3. Matching Surface Observations and Satellite
Data
[18] The Path-P products used for validation are spatial

and temporal averages of level 2 (geophysical data in orbital
format) retrievals. Spatial averages are computed from all
retrieval boxes whose centers are within a radius of 50 km
from the SHEBA site These spatial averages (varying
numbers per day) are then averaged over 24 hours to
compute daily averages. The analysis was performed using
level 2 data to minimize geolocation errors. However,
because time and spatial averaging scales correspond to
those of the gridded products, the uncertainties are generally
applicable to the gridded Path-P products.

3.2. AVHRR Data

[19] The Advanced Very High Resolution Radiometer
(AVHRR) data set is a product of the AVHRR Polar Path-
finder project [Maslanik et al., 1997]. Global Area Cover-
age (GAC) data acquired from overpasses nearest 1400
local solar time (2400 UTC) were regridded to a 5-km pixel
size. Cloud temperatures are computed for a 25 � 25 km
area surrounding the SHEBA site.
[20] The cloud-top temperature [Tc-CASPR] is deter-

mined from the 11 mm (channel 4) brightness temperature,
the clear-sky brightness temperature (not corrected for the
atmosphere), and the visible cloud optical depth. The infra-
red optical depth is determined from the visible optical
depth using a parameterization of cloud optical properties
[Key, 2000]. If the infrared slant-path cloud optical depth is
less than some threshold, the brightness temperature is
assumed to be a function of both the cloud temperature
and the upwelling radiation from the surface and atmos-
phere below the cloud. The threshold is chosen such that if a
cloud’s optical depth exceeds it, the transmittance is less
than 1% (equivalent to an optical depth of 4.6) and the
cloud is considered opaque. For opaque clouds the cloud-
top temperature is simply the 11 mm brightness temperature.
If the cloud is not opaque, the cloud temperature is
determined by first computing the cloud transmittance t
from the infrared optical depth, then calculating the cloud
radiance that would be required to produce the observed
radiance of the cloudy pixel given the cloud optical thick-
ness and the observed clear-sky radiance (as an approxima-
tion of the surface radiance under the cloud):

Lc ¼
L4 � tLclear

1� t
ð2Þ

where Lc is the cloud radiance, L4 is the channel 4 radiance,
and Lclear is the clear-sky radiance. If the estimated surface
temperature is too low and the cloud is thin, then the cloud-top
temperature will be too high and vice versa. If the adjusted
cloud-top temperature is either lower than the tropopause
temperature or higher than the maximum temperature from
950 mb to the tropopause, then it is reset to either the
minimum or maximum temperature, as appropriate.

3.3. SHEBA Surface Data

3.3.1. Standard Meteorological Observations
3.3.1.1. Cloud Fraction
[21] Cloud fraction was estimated at the SHEBA field site

by meteorological observers [C-METOBS]. Observations
were made following WMO standards, which call for
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reports in eighths of sky cover at 6-hour intervals near 0, 6,
12, and 18 UTC, unless observers were preoccupied by other
tasks. Daily averages were computed from this data set.
3.3.1.2. Surface Temperature
[22] The measurements of 2-m air temperature data from

the two SHEBA project office (SPO) 10-m towers [TEMP-
2m] were used for comparison with TOVS-derived skin
temperature (SKTEMP). A discussion regarding the differ-
ences between skin and 2-m temperatures is provided in
section 4. The SHEBA data set is an average for the two
towers after screening for points apparently contaminated
by the influence of the ship.
3.3.1.3. Temperature (GLAS-T) and Humidity Profiles
(GLAS-H)
[23] Temperature and humidity profiles were measured

with the GPS/LORAN Atmospheric Sounding System
(GLAS) during the entire SHEBA experiment. This system,
developed by the National Center of Atmospheric Research,
is based on a Vaisala RS 80-15 (GH or LH) sonde with a
stated accuracy of 0.2 C for temperature and 2% for relative
humidity. Actual accuracies for humidity, particularly at the
low temperatures encountered in the Arctic, are likely to be
lower. Measurements are available approximately twice
daily (1115 and 2315 UTC) for the period 11 November
1997 to March 1998 and up to 4 times daily (0515, 1115,
1715, and 2315) for April to August 1998. GLAS radio-
sonde launches have a high sampling rate of 1 Hz, yielding
measurements at levels within 0.5 mb of the standard Path-P
levels. Because of the high sampling rate, we linearly
interpolated radiosonde temperatures to the corresponding
Path-P temperature level without incurring any significant
error. Daily averages are then computed for those levels.
Relative humidity profiles are also interpolated linearly to
the Path-P layer boundaries, converted to specific humidity,
and integrated over the Path-P layers to obtain layer-average
precipitable water values.
3.3.2. Cloud Information From Lidar/Radar
3.3.2.1. The Depolarization and Backscatter
Unattended Lidar (DABUL)
[24] The lidar system that was used to obtain the SHEBA

cloud measurements is the Depolarization and Backscatter
Unattended Lidar, which was developed at NOAA’s Envi-
ronmental Technology Laboratory. DABUL is an active
remote sensing system that transmits pulses of laser light
into the atmosphere. The energy scattered back to the
system yields range-resolved information on the horizontal
and vertical structure of clouds and aerosols, as well as the
phase of clouds and precipitation throughout the tropo-
sphere. The DABUL range resolution is 30 m and real-time
averaging of 5 s was employed during SHEBA to reduce the
data quantity. For tropospheric cloud and aerosol informa-
tion, the 5 s averaging times were more than sufficient for
high signal-to-noise ratios. The lidar was located on the
helicopter deck of the CCGC Des Groselliers. DABUL was
operational from 1 November 1997 to 8 August 1998. For
additional system information and optical engineering detail
please refer to the studies of Grund and Sandberg [1996]
and Alvarez et al. [1998].
[25] Measurements from the DABUL system are pro-

cessed to extract information about Arctic cloud heights and
phases. After the necessary system corrections (i.e., back-
ground, range, and overlap) are applied to the data, the

intensity and/or depolarization fields are thresholded to
determine cloud base and top heights for all cloud layers.
Once the cloud boundaries are determined, the signal-
weighted average values of the depolarization ratio for each
layer are assigned. These ratios give an indication of the
phase of each cloud layer. The cloud data are then averaged
to create 10-min interval time series for the entire SHEBA
data set. For additional detail on the determination of cloud
statistics please refer to the work of Intrieri et al. [2002].
[26] For this study we translate the lidar cloud heights

into a time series of a binary indicator for clear (0) versus
cloudy (1) skies with a time resolution of 10 minutes. Daily
cloud fractions are derived by computing time averages of
the clear/cloudy flag. When comparing a cloud fraction
derived from a temporal average (C-LIDAR) to one based
on a spatial measurement (C-METOBS) or from satellite
(HIRS_CLDY) one must assume that the spatial variability
over an area translates to the temporal variability at a given
point. In other words, one assumes there is a time-averaging
scale that corresponds to a particular spatial scale that
depends on the velocity of the clouds.
3.3.2.2. Cloud Radar
[27] NOAA/ETL also designed, built, and operated an 8

mm (35 GHz) Doppler cloud radar (MMCR, Millimeter
Cloud Radar) at SHEBA. This radar was specifically
designed to provide continuous observations of reflectivity,
Doppler velocity, and Doppler spectral width of cloud
hydrometeors for most cloud types. This system has the
added feature of being sensitive to weakly precipitating
clouds, unlike conventional weather radars. This radar is
identical to those presently operating at the Department of
Energy (DOE) Atmospheric Radiation Measurement
(ARM) program Cloud and Radiation Testbed (CART)
facilities [Stokes and Schwartz, 1989], which are located
at Lamont, Oklahoma; Barrow, Alaska; and on Manus
Island near Papua New Guinea.
[28] Because the millimeter cloud radar was configured

for obtaining long-term, continuous measurements in remote
locations with minimum operator interface, it was designed
to be vertically-pointing. It utilizes a high-gain antenna and a
low peak-power transmitter with high duty-cycles for greater
reliability. The MMCR cycles through 4 modes that use
different combinations of pulse coding and range resolution.
The modes are combined into a single product in post
processing, which allows detection of clouds over a wide
range of cloud types. The radar was housed in the DOE/
ARM sea container, which was located near the lidar system
on the helicopter deck of the Des Groselliers. Technical
details concerning the MMCR can be found inMoran et al.’s
[1997] study. Because lidar returns saturate in the presence
of optically thick water clouds, cloud-top heights from the
cloud radar and the DABUL lidar are combined by simply
selecting the greater cloud-top height from either system.
3.3.3. Timescale Wavelet Analysis
[29] The timescales of the correlations between the sur-

face-based estimates and the satellite-based estimates are
investigated with the discrete wavelet transform, a technique
well adapted to nonstationary time series and to compositing
results from different stations or years. We used the max-
imum overlap wavelet decomposition [Percival and Gut-
torp, 1994; Lindsay et al., 1996] to obtain the wavelet
coefficients of each time series using the simplest wavelet
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filter, the Haar. With this technique, the correlation at a
particular scale is equivalent to finding the correlation
between two band-pass-filtered time series obtained with a
sequence of running-mean filters. Missing values were filled
with linear interpolation. The wavelet coefficients are easily
used to obtain the scale-dependent correlations of subsets of
the data [cf. Lindsay et al., 1996]. It is important to note the
difference between statistics computed using x-day averages
and those at a x-day timescale computed using the wavelet-
based technique: The band pass operation that is at the root
of the scale analysis effectively eliminates the high fre-

quency, day-to-day, noise or errors in the time series (a
low-pass filter) and isolates the intermediate-scale variability
from the slow variations associated with the annual cycle
(high-pass filter). Timescale analysis provides information
on the variability at a specific timescale. Variability at shorter
and longer timescales has been filtered out. In contrast,
averaging is equivalent to a low-pass so that variations at
longer timescales are still present in the data.
[30] We use timescale analysis here as a tool to judge

whether a climate process occurring at a known timescale is
observable using the data set. For example, a low correlation

Figure 2. Comparison of retrieved Path-P temperature at the 850-mb level with radiosonde
measurements during SHEBA. Lines of 1:1 correspondence and least-square fit are shown. Root Mean
Square error: 2.7 K, Mean Error (Radiosonde-T): 1.5, and correlation coefficient: 0.97.

Figure 3. Time series of retrieved Path-P temperature (solid) at the 850-mb level and radiosonde
measurements (dash) during the SHEBA field experiment.

SCHWEIGER ET AL.: VALIDATION OF TOVS PATH-P DATA DURING SHEBA SHE 17 - 7



at the 1-day timescale indicates that variations from one day
to the next are not well captured (or observed differently in
the comparison data set). High correlation at 3–5-day time-
scales would suggest that synoptic scale variability can be
observed. If correlations are low below the monthly time-
scale, then one would conclude that only seasonal variability
can be observed properly. Longer timescales are usually
associated with higher correlations both because noise
occurring at shorter timescales is removed from both time
series, and there is commonly more variability at the longer
timescales (annual cycle).

4. Results

4.1. Temperature Profiles

4.1.1. Uncertainties
[31] Atmospheric temperature profiles from Path-P

(TEMP) are compared with radiosonde data (GLAS-T) at
the SHEBA site for the entire year. Figures 2 and 3 show

examples of comparisons for the 850 mb level temperatures.
Uncertainties for daily values are on the order of 2.5 K with a
small bias of 1.5 K (Path-P colder than measurements).
Surface observations and Path-P retrievals are highly corre-
lated with a correlation coefficient of 0.97. This result is
particularly encouraging, as the lowest levels generally
exhibit the largest uncertainties (except for near the tropo-
pause). This is illustrated in Figure 4, which displays
seasonal biases and RMS errors for each retrieval level.
Too few data points are available for the fall—Our SHEBA
data set begins in November and ended in August—so while
no statistics are presented for this season, they are included in
the annual averages. Uncertainties are smallest during spring
when they barely exceed 2 K. Spring-time cloudiness is
usually lower than in other seasons and is less likely to affect
temperature retrievals. Uncertainties are generally greater at
850 mb and at 50 mb near the tropopause. These layers
commonly contain temperature inversions. One should rec-
ognize that Path-P values represent layer-average values

Figure 4. Comparison of uncertainties in TOVS Path-P temperature retrievals for SHEBA (a) winter
(December, January, and February), (b) spring (March, April, and May), and (c) summer (June, July, and
August) with variability (NatVar dash-dot line) during the same season. Too few points are available for
the fall to present meaningful statistics.
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interpolated to standard levels for a 100-km area, while the
radiosonde values are for a point in vertical and horizontal
space. The limited vertical resolution of the satellite retriev-
als is largely the reason for greater uncertainties in those
atmospheric levels. Biases tend to be positive at lower levels
and negative at higher levels.
[32] Uncertainties computed for data over the entire

annual range maybe of limited value because observation
variance has a large contribution from the annual cycle. We
therefore ask the question how retrieval errors compare with
intraseasonal temperature variability observed in radiosonde
data. At all levels and in all seasons uncertainties are smaller
than the intraseasonal variability (Figure 4). The relation of
the RMS error to the observed natural variability is a
measure of how well we can expect to observe variability
within a given season. During spring, this relation looks
best, as the natural variability far exceeds the retrieval
uncertainties. This is largely because the spring season
includes the transition from winter to summer and therefore
a large part of the annual variability.
4.1.2. Timescales of Correlation
[33] Figure 5 shows the variance (a) of temperature

profiles [GLAS-T] and the correlation (b) with Path-P
profiles at timescales from 1 to 16 days. Variances are greater
at longer timescales as well as near the surface and above the
tropopause. Correlations at 1-day and 8-day timescales are
on the order of 0.6 and 0.9. This result suggests that day-to-
day variations in radiosonde data and Path-P retrievals are

somewhat different, while week-to-week variations would
be similar in either record. This in part reflects the greater
variability at this timescale (greater than measurement error)
and the reduction of measurement uncertainty by temporal
averaging. Measurement uncertainty in this context includes
differences in timing, sensor characteristics (e.g., vertical
resolution), as well as spatial discontinuities. As discussed in
section 3.3.3, it is important to note the differences in
correlation computed using daily averages (see Figure 2)
and those computed at a 1-day timescale. Correlations shown
in Figure 5 do not include variability at longer timescales
(e.g., the annual cycle).

4.2. Layer-Average Precipitable Water

4.2.1. Uncertainties
[34] SHEBA radiosonde data allow us to perform a

detailed validation of the layer-average and total-column
precipitable water amounts contained in the Path-P data set
(Figure 6). Satellite-derived daily averages are highly corre-
lated with radiosonde measurements (r = 0.88) and the RMS
error computed from daily measurements over the entire
year for total-column precipitable water is 2.2 mm. There is
significant scatter in the measurements, however, leading us
to question whether signals relating to climate processes
would be above the retrieval noise level. To address this
issue we compare the retrieval uncertainties during three
seasons (winter, spring, summer) and compare them with
the variability in the same season as obtained from radio-

Figure 5. Temperature variance [C2] of the radiosondes (a) and correlations (b) of TOVS-derived
profiles with SHEBA radiosonde observations at different timescales.
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sondes (Figure 7). Residual errors from a linear fit are
shown as well. Residual errors provide a measure of how
much RMS errors might be reduced if systematic errors
(biases, gains) were removed. To reduce the noise in both
time series they are smoothed using a 5-day running mean
prior to computing the statistics. In winter, when there is
very little moisture in the Arctic atmosphere (<0.7 mm),
retrieval uncertainties in most layers are smaller than the
observed variability. We thus expect that during winter
the variability in the distribution of moisture is captured
in the Path-P data. As with temperature, the comparison of
retrieval uncertainties to natural variability is most favorable
in spring. RMS errors are well below natural variability. In
summer, when thick water clouds dominate and complicate
the retrieval of precipitable water, uncertainties are slightly
smaller than the natural variability for total-column precip-
itable water. One might conclude from this that the distri-
bution of water vapor in the Arctic atmosphere is not well
observed in summer. However, it is important to note that
these comparisons are between two very different data sets:
point measurements (radiosonde ascents) and spatial/tem-
poral averages (100 km/24 hours for Path-P products).
Figure 8 shows a time series of total-column water vapor
from Path-P and from radiosondes. Both time series are
smoothed using a 5-day running mean. This time series
shows that variability in measured moisture is well matched
by satellite retrievals during all times, even in summer when
retrieval uncertainties do not compare well with measured
variability. Further, as shown in Figure 7, biases contribute
significantly to the retrieval uncertainties during summer. In
fact, residual errors from a linear fit are somewhat smaller
than the uncertainties based on RMS errors. Removal of
biases and gains would reduce the retrieval uncertainties,
but this would require a larger data set for computing those
statistics with confidence.
4.2.2. Timescales of Correlation
[35] Figure 9 presents precipitable water [GLAS-H] var-

iance and correlations with Path-P retrievals [WVAPOR] at
timescales of 1–16 days. Near the surface (850 mb-SRF)

variances are similar at all timescales with a peak near 8
days. In higher layers, variances decrease with timescale. In
the lowest layer the correlations between TOVS and radio-
sondes profiles are low for timescales less than 8 days, but
the two data sets exhibit higher correlations at short time-
scales in upper layers. This result suggests that at short
timescales the TOVS instrument and radiosonde balloons
observe different phenomena at short timescales, but at
longer timescales (>8 days) they capture the same atmos-
pheric characteristics. A likely explanation is that both
TOVS and radiosonde observations are rather noisy because
of the low Arctic temperatures and the associated low
moisture content, which yields lower correlations at short
timescales. At longer timescales retrieval errors with inher-
ent shorter timescales—such as differences related to loca-
tion, timing, and fields-of-view—are less prevalent, leading
to higher correlations.

4.3. Surface Temperature

[36] The Path-P products include an estimate of surface
skin temperature (SKTEMP). Because a variety of methods
is used to retrieve surface temperature, depending on cloud
amount and surface type in the retrieval box, an unambig-
uous determination of whether the surface skin temperature
represents a ‘‘clear sky’’ or an ‘‘all sky’’ value is difficult to
make. In the Arctic, surface temperature can vary by several
degrees depending on whether the area is clear or cloud-
covered. The situation is further complicated by the fact that
the response of surface temperature to a change in cloud
cover varies depending on other conditions, such as wind
speed. Because the surface warms more slowly after a cloud
moves overhead than it cools after a cloud departs [Walsh
and Chapman, 1998], the time during which a ‘‘hole in the
clouds’’ is seen by a satellite remote sensing system will also
influence the retrieved temperature. This time is likely to be
relatively short for any clear pixel within a 100-km retrieval
box as long as clouds are moving relative to the surface.
Consequently, we do not expect a significant bias by infer-
ring that SKTEMP represents an all-sky value. Surface

Figure 6. Comparison of daily averaged total-column precipitable water content (mm) from TOVS
Path-P and from SHEBA radiosonde observations. Lines of 1:1 correspondence and least-square fit are
shown. RMS error: 2.2 K, mean error: 0.33, and correlation coefficient: 0.88.
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Figure 7. Comparison of uncertainties in TOVS Path-P precipitable water retrievals for (a) winter
(December, January, and February), (b) spring (March, April, and May), and (c) summer (June, July, and
August) with observed natural variability (NatVar) in the same season. Compared are mean errors, RMS
errors, and residual errors from a linear fit, with the standard deviation of the radiosonde measurements as
a measure of natural variability.

Figure 8. Time series of total-column precipitable water from TOVS Path-P (solid) and radiosonde
measurements (dashed) during SHEBA. Both time series are smoothed using a 5-day running mean.
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temperature is not retrieved by the 3I algorithm if the cloud
cover exceeds 90%, however, thus we expect a slight clear-
sky bias in the Path-P skin temperatures.
[37] Skin temperatures were not routinely measured at the

SHEBA site. Instead we compare Path-P retrievals to air
temperatures 2 m over the surface (Figure 10). Previous
Arctic field programs in which both skin and 2-m air
temperatures were measured show that the difference
between these quantities is usually less than 1 K (colder
surface) except during calm, clear days during winter, in
which case the difference may be as large as 3 K [CEAREX
Drift Group, 1990]. Our comparison with measured 2-m
temperatures suggest that neither of these effects, which
would yield a low bias, is apparent in the Path-P SKTEMP
variable. In fact, Path-P SKTEMP appears to be a rather
good proxy for ‘‘all sky’’ 2-m surface temperatures. Path-P
values correspond closely to the measured 2-m temperature
(RMSE = 3 K, r = 0.97). The lowest temperatures are
overestimated slightly. This is contrary to our expectation of
a ‘‘clear-sky bias’’ or ‘‘skin-temperature’’ bias. It is likely
caused by low warm clouds missed by the cloud detection
algorithm, which may actually overcompensate the ‘‘clear-
sky’’ and ‘‘skin’’ biases. For higher temperatures (>�20 K)
Path-P appears to underestimate surface temperature. This
may in part be caused by limiting retrieved temperatures
over ice-covered pixels to not exceed the melting point of

ice. This attempt to keep retrievals ‘‘physically plausible’’
may introduce the small observed bias.

4.4. Cloud Fraction

[38] Cloud detection over Arctic sea ice has been prob-
lematic because of difficulties in defining unique spectral
signatures for clouds and surfaces with existing satellite
sensors. Earlier studies [e.g., Schweiger and Key, 1992]
showed that Arctic cloud fractions contained in a widely
used satellite-derived data set (International Satellite Cloud
Climatology Project (ISCCP) C-series) exhibited character-
istics that were significantly different from surface measure-
ments, particularly in that the annual cycle was not
captured. In a more recent study [Schweiger et al., 1999],
we compared cloud fractions from an updated ISCCP data
set (D-Series) and from the TOVS Path-P data set with
conventional surface-observed cloud fractions from the
Russian North Pole (NP) meteorological stations adrift on
the Arctic sea ice. We found that cloud fractions from the
Path-P data set appear to capture the annual cycle of
cloudiness, while the ISCCP data set still does not appear
to capture the cycle well. Further, variability of cloud
fraction in Path-P versus that from surface observations
appears to be consistent at timescales of about 4 days,
particularly during the summer. These results are encourag-
ing, yet several significant questions remain:

Figure 9. Precipitable water variance in [mm2] (a) and correlations (b) of TOVS soundings with
SHEBA radiosonde observations at varying timescales.
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1. How reliable are ‘‘ground truth’’ data based on
conventional cloud fractions estimated by human obser-
vers? Particularly, how does the absence of light during the
Arctic winter affect these observations [cf. Hahn et al.,
1995]?
2. How does the presence of clear-air ice particle

precipitation (ICP) (so-called diamond dust) affect cloud
statistics obtain computed from satellite data? Can satellites
detect it and are previously found discrepancies in winter
time cloud fraction and in surface and satellite observations
[Schweiger and Key, 1992; Wilson et al., 1993] attributable
to the presence of ICP?
3. Why do surface and satellite data correlate poorly at

timescales of less than 4 days? Is this related to the limited
spatial resolution of the satellite sensors compared to

surface observations, or is it simply due to the level of
noise in the retrieval system?
[39] Measurements made during the SHEBA period offer

several avenues for attacking these problems. Standard
meteorological observations of clouds can be paired with
objective information obtained from a sophisticated cloud
radar and lidar system that was deployed on the deck of the
Des Groselliers. In addition several groups are working
toward the validation and improvement of their satellite-
based algorithms and are producing times series of their
results for intercomparisons of satellite retrievals and sur-
face measurements.
4.4.1. Subjective Versus Objective Cloud Fraction
[40] Cloud fraction estimated by meteorological observ-

ers is reported according to the WMO code as the fraction

Figure 10. Daily averaged surface skin temperature (SKTEMP) from TOVS Path-P compared with 2-m
air temperature from the SHEBA 10-m tower (TEMP-2m). The same data are shown as a scatterplot (a)
and time series (b). RMS error is 3 C, correlation coefficient is 0.97. Lines of 1:1 correspondence and
least-square fit are shown.
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(in eighths) of the ‘‘sky dome’’ that is cloud-covered. The
geographic area corresponding to an observation is
dependent on factors such as visibility, cloud height, and
cloud type. Lidar backscatter has been processed by the
NOAA-ETL team into a time series of binary information
(clear or cloudy) with a resolution of 10-minutes. To
obtain ‘‘cloud fractions’’ that can be compared to values
from the surface (C-METOBS) or satellite retrievals, lidar
time series are averaged temporally. If we assume a
uniform cloud field moving with a speed of 5 m s�1 over
a stationary lidar system, then a 6-hour average will
correspond roughly to a 100-km profile. The correspond-
ing fields-of-view for a surface observer and a satellite
sensor also depend on the cloud height. On clear days or
days with high clouds, the area for which the surface
observations are representative is much larger than it
would be for low-cloud conditions. Moreover, satellites
and meteorological observers only report a snapshot in
time; and because the cloud field is not uniform, compar-
isons at small timescales are prone to disparity. Our study,

consequently, will focus on comparisons at timescales of 1
day and longer. Figure 11 shows a comparison of 5-day
averaged cloud fractions from lidar (C-LIDAR) and from
C-METOBS. The two data sources are highly correlated (r
= 0.86) at this timescale. C-LIDAR cloud fractions are
generally higher than C-METOBS, particularly for reports
with small cloud fractions, which tend to occur more
frequently in winter. Hahn et al. [1995] have shown that
polar cloud observations from observers are biased by the
availability of moonlight. However, adding the their bias
(<5%) to SHEBA observations is insufficient to account
for the entire difference. A significant part of the differ-
ence is likely due to the fact that the Lidar is sensitive to
ICP so that events of ICP are contained in the cloud
statistics obtained from C-LIDAR. Satellite versus surface
observations.
[41] Figure 12 shows a time series comparing cloud

fractions (HIRS_CLDY) from the Path-P data set, C-LIDAR,
and C-METOBS. Data are smoothed using a 3-day running
mean. The three data sets exhibit surprisingly good agree-

Figure 11. Comparison of cloud fraction from Lidar and from meteorological observations (C-
METOBS) for the SHEBA period. Individual values represent 5-day averages. RMS error is 12 [% cloud
cover], correlation coefficient is 0.86. Letter symbols W, S, H, and F denote seasons.

Figure 12. (opposite) Time series of cloud fraction from TOVS Path-P (dark solid), the ETL cloud lidar (dotted), and
meteorological observations (C-METOBS, light solid) made at the SHEBA camp. Data are smoothed using a 3-day running
mean.
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ment given their vastly different perspectives, and the larger
variations are captured well. Lower cloud fractions in C-
METOBS are noticeable in both winter and spring, but
agreement is better in summer. The Path-P cloud fractions
during winter are generally closer to the C-LIDAR values
than to the C-METOBS, especially when the cloud fraction is
small. This suggests that the Path-P cloud detection algo-
rithm properly detects clouds but includes ICP, which is not
part of the cloud fraction reported by the surface observer.
This observation would support of the explanation proposed
by Wilson et al. [1993] for the discrepancy between winter
time cloudiness in the ISCCP data set and climatologies
based on surface observations. However, as shown by
Schweiger et al. [1999], other factor are clearly responsible
for the large differences in winter time cloudiness between
the International Satellite Climatology Project (ISCCP) and
surface-based cloud climatologies.

[42] Further work will be needed to characterize the
specific cloud types and conditions that are responsible
for differences between the satellite and surface cloud
fractions, which will enable the data sets to be combined
for generating long-term statistics and to study climate
variability.
4.4.2. Principal Characteristics of Cloudiness
[43] One way to evaluate the quality of a data set is to

examine if some of the fundamental characteristics of varia-
bility are captured. Arctic cloudiness has long been thought to
have a primarily ‘‘bimodal’’ distribution: clear skies domi-
nate in winter while completely cloud-covered skies domi-
nate in summer. This distribution is apparent in the annual
statistics computed from C-METOBS data during SHEBA
(Figure 13a). The corresponding distribution derived from
C-LIDAR exhibits a different shape. There are about 10%
fewer completely clear cases, and more observations fall

Figure 13. Distribution of cloud fraction during the SHEBA period derived from (a) meteorological
observations (C-METOBS), (b) cloud lidar (C-LIDAR), and (c) TOVS Path-P (HIRS_CLDY).
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into the 90–100% cloud fraction category. The cloud
fraction (HIRS_CLDY) distribution from Path-P looks
very similar to C-LIDAR. The similarity in the distribution
of cloud fraction demonstrates that cloud fractions in the
Path-P data properly capture the overall variability.
4.4.3. Timescales of Correlation
[44] We previously found [Schweiger et al., 1999] that

Path-P cloud fractions correlate well with surface observa-
tions from the NP station data set at timescales greater than 4
days. Here we repeat this analysis using data from SHEBA.
Using a wavelet-based band pass filtering method [Lindsay
et al., 1996] we compute correlations at varying timescales.
Results are very similar to those obtained from the NP
station data base (Figure 14) with slightly higher correlations
for most of the timescales. Correlations at 2-day timescales
are on the order of 0.5 and reach a maximum of 0.7 (�50%
variance explained) at the 8-day timescale. RMS differences
between C-LIDAR and HIRS_CLDY at timescales greater
than 4-days are less than 20%. These results confirm the
quality of the observations from the NP station data and our
previous results, but again pose the question why the
correlations at shorter timescales are relatively poor. There
are several possible explanations: Fundamental differences
in the observations (e.g., viewed from below and above) and
a temporal mismatch contribute to random noise in the
comparison. At larger timescales this noise is reduced and
a stronger signal becomes apparent. We considered another
possibility: The relatively low resolution of the HIRS sensor
masks variability at small spatial scales. It is likely that there
is a correlation between spatial and temporal scale. For
example, variations in cloudiness caused by changes in
synoptic conditions (3-day timescale) may be more homo-
geneous spatially, and therefore more likely to be detected by

the low resolution system. To investigate this issue we
compared timescale correlations of surface data and cloud
retrievals from AVHRR (not shown) which has a field of
view of approximately 1-km. The time correlation structure
is very similar to the one from TOVS so that resolution does
not appear to be a significant factor. Further work is needed
to clarify the source of this timescale dependence of the
correlations.

4.5. Cloud-Top Temperature

[45] Mean monthly cloud-top temperatures from three
sources are compared: CLTEMP from Path-P, CLTEMP-
AVHRR from the CASPR algorithm, and values derived
from a combination of ETL’s surface-based cloud radar/lidar
systems. Cloud-top height from the radar/lidar data is con-
verted to cloud-top temperature using SHEBA radiosonde
profiles. There is good agreement between the two satellite
estimates (Figure 15). Although they use different instru-
ments, resolutions, and algorithms, the satellite retrievals are
similar in that they are based on emitted radiances. Retrievals
from the radar/lidar systems, in contrast, are based on the
interpretation of back scattered radiation. A large difference
(over 10 K) between these two cloud-top estimates is
notable. The likely explanation for this large difference is
the presence of optically thin high clouds. These clouds emit
little radiation and are relatively transparent to longwave
emission from below (surface or lower clouds), yielding
much higher ‘‘effective’’ cloud-top temperatures as seen
from space. The active radar/lidar systems are sensitive to
the high cloud particles, and consequently retrieve a physical
boundary of the upper cloud, which is much higher (colder).
Another factor is the possible mislabeling of clear versus
cloudy scenes. These differences highlight the need for

Figure 14. Correlation of cloud fraction from C-METOBS and TOVS Path-P at varying timescales.
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careful interpretation and application of measurements from
differing sources. More detailed comparisons of these meas-
urements, making use of SHEBA surface-based and aircraft-
based information of cloud microphysics of the entire
atmospheric column, should provide insights on how to best
use and combine information from surface-based and satel-
lite sources.

5. Discussion and Conclusions

[46] Validation of satellite-retrieved geophysical products
with surface-based observations often involves accounting
for and mitigating fundamental inconsistencies between
measurements from disparate sources. Errors in a satellite
retrieval may result from such a comparison, even though
the space-based value may be an accurate representation of
conditions in the footprint that includes the surface meas-
urement site. We have attempted to mitigate these problems
by analyzing characteristics of variability of the data sources
and by averaging values over appropriate time and space
scales. However, fundamental differences in the observing
systems do contribute to uncertainties revealed in our
analysis. We have also attempted to present uncertainties
in the context of natural variability and at a range of
timescales. We expect that by presenting the uncertainties
in this manner, a potential user can determine whether a
particular product is appropriate for his or her application.
[47] Using primarily data from the SHEBA experiment

spanning an entire annual cycle, we have shown that TOVS
Path-P products capture atmospheric and surface quantities
in the Beaufort Sea region. We believe that the retrieval
quality is comparable in other regions of the central Arctic
where surface conditions are similar. Others have also
demonstrated [e.g., Claud et al., 1991], the high quality of
3I retrievals over unfrozen, high-latitude ocean, where the
surface is more homogeneous, temperature inversions are
less frequent, and cloud detection is more reliable than over

a snow/ice-covered surface. Further work is required to
validate Path-P products over polar land surfaces.
[48] Path-P retrievals of surface skin temperatures at the

SHEBA experiment site display high correlation with meas-
urements (r = 0.97). We reason that the response of the
snow/ice surface temperature to changing cloud conditions,
and attendant surface radiation fluxes, explains the lack of a
clear-sky bias. Snow/ice skin temperature responds rela-
tively quickly to increases in downwelling infrared radiation
caused by the arrival of a cloud, but it cools more slowly
when the cloud departs. The result is that skin temperature
under a partially cloudy sky is probably close to that of the
temperature under the clouds, as the surface would not have
had sufficient time to cool to clear-sky values during breaks
in the cloud cover. Our favorable comparison to SHEBA
measurements (RMS = 3 K), therefore, gives us confidence
that Path-P surface skin temperatures are representative of
most atmospheric conditions and should be useful in a wide
variety of applications in which high spatial and temporal
resolution is not required.
[49] The Path-P retrievals of upper-level temperatures

and moisture content offer opportunities to evaluate Arctic
atmospheric models and NWP Reanalysis data sets, because
the conventional measurements that constitute the primary
input data to these models are sparse. Satellite-derived
profiles cannot compete with radiosondes in vertical reso-
lution, but the horizontal resolution, particularly in sparsely
populated areas, is significantly higher for satellite retriev-
als. For this reason the Path-P data set may not be well-
suited for detailed studies of cloud-radiation interactions or
turbulent exchanges over varying ice types, but it may be
useful for regional and basin-wide studies. With respect to
accuracy, we are particularly encouraged by the compar-
isons of Path-P values to those from SHEBA radiosondes
(RMS 2.5K, r 0.95), as the uncertainties are comparable to
those from midlatitude ocean regions where retrieval algo-
rithms are expected to perform well owing to the homoge-

Figure 15. Comparison of cloud-top temperature derived from the combined lidar/radar system
(dotted), the TOVS Path-P data set (dark solid), and the AVHRR-CASPR algorithm (light solid).
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neous background. Satellite-derived soundings over snow-
covered and sea-ice-covered regions were, until recently,
regarded as unusable owing to challenges introduced by
extreme polar conditions, such as frequent temperature
inversions, little cloud/surface contrast in temperature or
albedo as seen from space, and inadequate sources of first-
guess profiles for the retrieval algorithm. We have shown
that temperature profile uncertainties are on the order of 3 K
and are significantly below the natural variability. How does
this retrieval uncertainty compare to a signal one may try to
observe? This of course depends on the signal. If we use the
intraseasonal variability (standard deviation within a sea-
son) as a proxy for signal, we conclude that temperature
errors are well below this ‘‘signal.’’ Uncertainty in moisture
profiles measured against such a ‘‘signal’’ compares less
favorably. However, this disparity can be attributed to
several sources other than retrieval error: fundamental
differences in the physical characteristics observed by
satellite and surface-based systems, errors in the ‘‘ground
truth’’ validation data (radiosondes), and temporal/spatial
differences in the observations. This is particularly so for
water vapor, as radiosonde measurements tend to be noisy at
low temperatures. Further, the distribution of water vapor as
measured by radiosondes is highly variable with height
affecting comparisons to a satellite retrievals with rather
low vertical resolution. Spatial variability may similarly
influence the comparison with a 100-km resolution system.
To reduce measurement uncertainty below a different
‘‘process signal,’’ users may have to apply additional spatial
or temporal averaging to the data. The removal of system-
atic errors through more extensive comparisons with vali-
dation data is an obvious approach to remedy the situation,
but this would require a large, comprehensive validation
data set. We believe that Path-P fields will be useful for
characterizing spatial variability and deciphering interrela-
tionships and feedbacks between processes involved in
energy exchange between the atmosphere and the surface,
and between low and high latitudes. Users should keep in
mind, however, that residual errors caused by insufficient
calibration and/or intersatellite differences may still exist,
which may affect time series analyses of individual varia-
bles. Because we perform retrievals from a single satellite at
any one time, spatial variability is not affected by intersa-
tellite calibration differences. We therefore believe that the
best use of the Path-P data set in the context of analyzing
climate trends is to provide information on their manifes-
tation (or lack thereof) in spatial variability.
[50] As we have discussed at length in section 4, compar-

ing measurements of cloud properties (fraction and height)
from surface-based observers or instruments to estimates
from spaceborne sensors is far from straightforward. Clouds
appear fundamentally different depending on one’s perspec-
tive in space and time, as well as the device used to sense
the existence of cloud particles (e.g., human eyes, bulk
emission, lidar backscatter). We have shown that values
obtained from these sources often disagree, but we have
also explained that in many circumstances agreement would
not be expected. Some of the disparities we observe, in fact,
make perfect sense, as is the case for cloud-top height
derived from satellite-measured infrared radiances and that
derived from a radar/lidar system. Unless the cloud-top is
very sharply defined, widespread, and optically thick, the

satellite estimate will always be a lower height. Despite
these issues, we have shown encouraging evidence that
Path-P satellite retrievals of Arctic clouds properly capture
the annual cycle, appear to include the presence of diamond
dust in the cloud statistics, and are consistent with lidar/
radar retrievals of cloud-top height. We believe the Path-P
cloud products will be useful for characterizing spatial
variability and untangling relationships between large-scale
atmospheric dynamics and thermodynamics that may con-
tribute to long-term change of the Arctic surface. The Path-
P data set is the first of its kind to provide this information at
a spatial and temporal resolution that matches the needs of
modelers as well as investigators of basin-wide and regional
short-term climate system behavior.
[51] Timescale analyses of Path-P variables with SHEBA

validation data provide insights into what type of variations
in the surface record we should expect to find in the satellite
record. Processes operating at less than a 3-day timescales
are generally less well represented. This is particularly true
for the retrieval of clouds and precipitable water. However,
differences in satellite and surface data at those timescales
may be as much caused by differences in the observing
system perspective as by measurement error.
[52] In summary, our validation of Path-P products with

surface-based measurements from the SHEBA field pro-
gram, as well as with radiosonde data from NP stations in
other parts of the Arctic Ocean, demonstrates viability of
atmospheric sounding over ice-covered oceans. The year-
long SHEBA field program, with its nearly comprehen-
sive suite of state-of-the-art measurements for the atmos-
phere, ice, and ocean, provides new opportunities for
validating remote sensing products in the Arctic. While
many issues still remain, it is clear that progress has been
made, and that further efforts will result in a better
understanding of processes that govern the Arctic climate
system.
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