= DL

What's New
INn IDL 5.4

IDL Version 5.4
RE S EARC H September, 2000 Edition
SYST EMS Copyright © Research Systems, Inc.
‘ All Rights Reserved

ooooooooooooooo

Restricted Rights Notice

The IDL® software program and the accompanying procedures, functions, and documenta-
tion described herein are sold under license agreement. Their use, duplication, and disclo-
sure are subject to the restrictions stated in the license agreement. Research Systems, Inc.,
reserves the right to make changes to this document at any time and without notice.

Limitation of Warranty

Research Systems, Inc. makes no warranties, either express or implied, as to any matter not
expressly set forth in the license agreement, including without limitation the condition of
the software, merchantability, or fitness for any particular purpose.

Research Systems, Inc. shall not be liable for any direct, consequential, or other damages
suffered by the Licensee or any others resulting from use of the IDL software package or its
documentation.

Permission to Reproduce this Manual

If you are alicensed user of this product, Research Systems, Inc. grants you alimited, non-
transferable license to reproduce this particular document provided such copies are for your
use only and are not sold or distributed to third parties. All such copies must contain the
title page and this notice page in their entirety.

Acknowledgments

IDL® is aregistered trademark of Research SystemsInc., registered in the United States Patent and Trademark Office, for
the computer program described herein. Software = Vision ~ is atrademark of Research Systems, Inc.

Numerical Recipes™ is atrademark of Numerical Recipes Software. Numerical Recipes routines are used by permission.
GRG2™ isatrademark of Windward Technologies, Inc. The GRG2 software for nonlinear optimization is used by permis-
sion.

NCSA Hierarchical Data Format (HDF) Software Library and Utilities

Copyright © 1988-1998 The Board of Trustees of the University of Illinois
All rights reserved.

CDF Librar

Copyright ® 1999

National Space Science Data Center
NASA/Goddard Space Flight Center

NetCDF Library
Copyright © 1993-1996 University Corporation for Atmospheric Research/Unidata

HDF EOS Library
Copyright © 1996 Hughes and Applied Research Corporation

This software is based in part on the work of the Independent JPEG Group.

This product contains StoneTable™, by StoneTablet Publishing. All rights to StoneTable™ and its documentation are
retained by StoneTablet Publishing, PO Box 12665, Portland OR 97212-0665. Copyright © 1992-1997 StoneTablet Publish-

ing

WASTE text engine © 1993-1996 Marco Piovanelli

Portions of this software are copyrighted by INTERSOLYV, Inc., 1991-1998.

Other trademarks and registered trademarks are the property of the respective trademark holders.

Contents

Chapter 1:

Overview of New Features in IDL 5.4 ..o, 7
Visualization ENhancementSin IDLcoocooeeiiiienieerese e 8
AnaysisEnhancementSin IDL 5.4 ...t 17
IDL Language ENNBNCEMENTSccveiriririesieeeeee e 31
LZWI/GIF No Longer SUPPOrted iN IDLcccvieeeeieseceeeesie sttt sre e 41
File 1/O ENNANCEMENTSooeeieiieeerie ettt saeeneesaesresneesesnennens 43
Development Environment ENhaNCEMENLScccceieviiieieesi et 46
Installation and Licensing ENhanCemMENtSccvviireieienenesereeeeeee e 54
Application Development ENhanCementscccocvvvieeieve e 57
IDL Wavelet ToolKit ENNANCEMENTScooviiiiieieie et 59
New and ENhanced IDL ULHTIESccoviiirieeenereseree s 62
New and ENhanced IDL ODJECLSccciiierieieeirerieseseee s 66
New and Enhanced IDL ROULINES ..ot 88
New and Updated System Variables ..o 126

What's New in IDL 5.4 3

Features ObSOleted iN IDL 5.4cooiiiiieeecrerie ettt 128
Platforms Supported in thiSREIEASEcccoiiiiiier e 134
Chapter 2:

Date/Time PlIotting in IDLcuuiiiiiiiiiiiieiiceceeeee e 135
(@ 4T T PSSR 136
How to Generate Date/ TIME D@cccveveiieeeereiieeerie e 138
Displaying Date/Time Data on an AXisin Direct GraphicCscccccevivveeveieseseeneene. 140
Displaying Date/Time Dataon an Axisin Object GraphiCsccocerereeiereneresieiennens 148
Chapter 3:

NEW IDL ROULINES ..ottt 157
ARRAY _EQUALL .ottt ettt sae s naese e senessenassenesannenens 158
BESELK ettt et e et e e ae e e s aae e et e e aareesreeeabeeeaaaeenraen 159
2] S 161
COLORMARP _APPLICABLE ..ottt st 162
(@@]V 1 ST 163
[I O 11V 5 R 164
o] I P 168
FILE_ EXPAND _PATH ettt sttt st s 170
Y T R 172
I I s Y IR 173
Y 1 P 177
[[1 L] SR 179
0] SRR 187
LEGENDRE ...ttt sttt te e s re e st e e s be e e eae e e s aae e sateesateesnteeebeeesnneenneean 189
YN S | SR 192
N A = L 15 R 201
MATRIX_MULTIPLY ottt et ste et e e saesesaesesassensnsenes 205
Y 2SR 207
A I 1 N SRR 210
SAV GOL ..ttt b ettt ae e a b e a et e e b e e b e e b e e nens 219
1S 11 1 SR 223
SPHER _HARM ..ottt sttt te e sbe e b e nneenbe e seenee e 227
AT 11 T 230
I == RS 232
WV _CWT ettt st b e e e st s et e s e e e be et e e ntenensenenaeneneas 237

Contents What's New in IDL 5.4

WV _DENOISE ..ottt sae e s e sneesneesreesree e 239
WV _FN_ GAUSSIAN .ottt ettt e et e e e e st e e st e e st e e snte e eneeeneeenreas 243
WV N IMORLET oot se s s ss s ese s s een e 246
YAV = N =N OO 249
DB OO 252
D OO | I O = 256
D IO 1 I I O 257
D (O 264
XV OLUME ...ttt ettt b e e e s bt e e e s anba e e e sbaeeesanbaeeesanrees 273
Chapter 4:

N @] o = o3 ST 279
S =0T S 280
[T = TR 313

What's New in IDL 5.4 Contents

Chapter 1:

Overview of New
Features iIn IDL 5.4

This chapter contains the following topics:

Visualization Enhancementsin IDL
Analysis Enhancementsin IDL 5.4
IDL Language Enhancements
LZW/GIF No Longer SupportedinIDL . . .
File I/0 Enhancements
Development Environment Enhancements .
Installation and Licensing Enhancements . .
Application Development Enhancements . .

What's New in IDL 5.4

54

IDL Wavelet Toolkit Enhancements
New and Enhanced IDL Utilities

New and Enhanced IDL Objects

New and Enhanced IDL Routines
New and Updated System Variables
Features Obsoleted in IDL 5.4
Platforms Supported in thisRelease

126
128
134

8 Chapter 1: Overview of New Features in IDL 5.4
Visualization Enhancements in IDL

The following enhancements have been made in the area of Visualizationin the IDL
5.4 release;

* New Visualization Utilities

» Double-Precision Support for Visualization

» Enhanced Date/Time Support for Plotting in IDL

* Elimination of Limits on the Number of Contour Levels

» Improved Preview Functionality for PostScript Files

» New Printer Support for UNIX Platforms

* Windows Metafile Format (WMF) Support for Direct Graphics
* New Reverse Axis Plotting Example for Object Graphics

» Ability to Specify Valuesin Points for the IDLgrPattern Object

New Visualization Utilities

IDL 5.4 now contains new visualization utilities which can be used as stand-alone
applications tools which help you create applications. These utilities can also be
embedded within IDL applications that you devel op.

For more information, see “New and Enhanced IDL Utilities” on page 62.
Double-Precision Support for Visualization

IDL routines and objects that can be used for visualization now accept double-
precision data without converting it to single-precision. This allows for greater
precision and flexibility when visualizing data. For routines that can return an array
of data, a keyword has been added to allow you to choose between the default single-
precision and an optional double-precision.

The following is asimple example of how double-precision data can now be
displayed in IDL plotting:

PRO dp_pl ot _exanpl e
DEVI CE, RETAI N=2, DECOVPOSED=0

I P. BACKGROUND=255
' P. COLOR=0

Visualization Enhancements in IDL What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 9

secPer Year = 365. 24d* 86400

tinme = [1d-43, 1d-35, 1d-12, 1d-6, 0.01, 1, 15, 180, 210, $
1d6*secPer Year, 1d10*secPer Year]

tenperature = [1d32, 1d27, 1d15, 1d13, 1di1, 1d10, 3d9, 1d9, 1d8, $
4000, 2.725]

W NDOW 0, xsize=400, ysize=300
PLOT, time, tenperature, /NOCLIP, $
PSYM = -2, XSTYLE = 1, YSTYLE =1, /XLOG /YLCG $

YRANGE = [1,1d33], XTICKS = 6,$

XTI CKV = [1d-43, 1d- 30, 1d- 20, 1d- 10, 1, 1d10, 1d20], $
XTITLE = 'Time since Big Bang (sec)', $

YTITLE = ' Tenperature (K)', $

TITLE = ' Tenperature of the Universe'
END

Thisresultsin the following plot:

Temperature of 1he Universe

Ternperalure (K

0
10 | 1 | | |
167 gm0 g0 g TO T g TD g0

Time since Bl’g Bonq [SE'C‘:’

Figure 1-1: Double-Precision Plotting in IDL

IDL System Variables Now Supporting Double Precision

Thefollowing IDL system variable fields now support double precision:

« IPT
« 1[XYZ].CRANGE
« 1[XYZ].RANGE

What's New in IDL 5.4 Visualization Enhancements in IDL

10 Chapter 1: Overview of New Features in IDL 5.4

. 1[XYZ].S
« 1[XYZ].TICKFORMAT
« 1[XYZ].TICKV

For more information on specific changes to these IDL System Variables, see “ New
and Updated System Variables’ on page 126.

IDL Routines Now Supporting Double Precision

Thefollowing IDL routines now support double precision:

* AXIS * LIVE_CONTOUR * T3D

* CONVERT_COORD * LIVE_PLOT e TV

* CONTOUR * LIVE_SURFACE « TVCRS

* COORD2TOS « PLOT » TVSCL
 CREATE_VIEW * PLOTS * VERT_T3D
* CURSOR * POLYFILL « XOBJVIEW
* DRAW_ROI * POLYSHADE « XYOUTS
* |ISOCONTOUR » SURFACE

« OPLOT SHADE_SURF

For more information on specific changes to these IDL routines, see “New and
Updated Keywords/Argumentsto IDL Routines’ on page 91.

IDL Objects Now Supporting Double Precision

The following IDL objects now support double precision:

e IDLanROI » IDLgrLight » |IDLgrSurface
e IDLanROIGroup e IDLgrModée e IDLgrText
» IDLgrAXxis e IDLgrPlot e IDLgrView
< |DLgrBuffer « IDLgrPolygon » |IDLgrVolume
» |IDLgrColorbar » |IDLgrPolyline * IDLgrVRML
 IDLgrContour » IDLgrPrinter * |IDLgrWindow

Visualization Enhancements in IDL What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 11

* |IDLgrImage e IDLgrROI
» IDLgrLegend « IDLgrROIGroup

For more information on specific changes to IDL Objects, see “New and Updated
Keywords/Argumentsto IDL Object Methods’ on page 67.

IDL Utilities Now Supporting Double Precision
The following IDL system utility now supports double precision:
« XOBNIEW

For more information on specific changes to XOBJVIEW, see “New
Keywords/Argumentsto Existing IDL Utilities” on page 64.

What's New in IDL 5.4 Visualization Enhancements in IDL

12 Chapter 1: Overview of New Features in IDL 5.4

Enhanced Date/Time Support for Plotting in IDL
IDL routines and objects used for plotting have been enhanced to make it easier to

display date/time data along axis. The following figure shows an example of the
capabilities of the new date/time support:

Ewxchange Roter “en ws. US Dallar

120F 7
15 E— _E
110 : _E
105 E— _:
o0 E— _E
95 E— _E
Gt Mo Dec Jan Feb Mar Apr Moy Jun Jul Aug
?UIOU
120 Yen vs. US Dollar — September Through November 199%
15
110

105

100

95

90

1 21 a1 1 21 [31 10 20
Oct |N0\r
1599

Figure 1-2: New Date/Time Display Along Axis

The enhancements for date/time support for plotting in IDL are:

* A new TIMEGEN array creation routine— The new TIMEGEN function
returns an array (with the specified dimensions) of double-precision floating-
point values that represent times by Julian dates.

* New date/time keywords for IDL Direct Graphics — Four keywords have
been modified or added to Direct Graphics routines to provide improved
capabilities for date/time axis labeling. These keywords are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL, and TICKFORMAT.

Visualization Enhancements in IDL What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 13

* New date/time keywords for IDL Object Graphics — Four keywords have
been modified or added to the IDLgrAXis class to provide improved
capabilities for date/time axis labeling. The keywords are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL, and TICKFORMAT.

 New Fieldsfor the !X, Y, and ! Z system variables — These new fields
provide easier date/time axis labeling capabilities. They are: TICKLAYOUT,
TICKUNITS, TICKINTERVAL.

e Improvementsto LABEL_DATE — The LABEL_DATE routine now accepts
format strings that include codes for sub-seconds. Also, LABEL_DATE will
accept an array of DATE_FORMATS and a Level argument so that it may be
used for multi-level date/time axes.

For more information on date/time support, see Chapter 2, “Date/Time Plotting in
IDL".

Elimination of Limits on the Number of Contour Levels

Previousto thisrelease, the CONTOUR routine has been limited to afixed number of
levels (most recently 60) that can be rendered. This limitation has now been removed.
CONTOUR will now accept vectors that contain more than 60 elements for each of
the C_* keywords (C_ANNOTATION, C_COLORS, C_LABELS, C_LINESTYLE,
C_ORIENTATION, C_SPACING, and C_THICK) aswell asfor the LEVELS
keyword. The NLEVEL S keyword may now be set to a value greater than 60.

Improved Preview Functionality for PostScript Files

In IDL 5.4, you now have the ability to specify the resolution of the preview when
creating a PostScript or an Encapsulated PostScript file. You can now specify the
width, height, and depth of the preview with the new PRE_XSIZE, PRE_Y SIZE, and
PRE_DEPTH keywords to the DEVICE routine.

For more information on specific changes to IDL Objects, see “New and Updated
Keywords/Argumentsto IDL Routines’ on page 91.

What's New in IDL 5.4 Visualization Enhancements in IDL

14 Chapter 1: Overview of New Features in IDL 5.4

New Printer Support for UNIX Platforms

InIDL 5.4, the Xprinter (UNIX printer support) has been upgraded to version 3.3.
This provides the following added functionality:

e Support for the following printer models with the addition of the associated
PPD files:

HP LaserJet 4Si MX PS600 dpi HP LaserJet 8000

HP LaserJet 5/5M PostScript Tektronix 560

HP LaserJet 5P/SMP Lexmark Optra S 2455

HP LaserJet 5Si Lexmark Optra Color 1200
HP LaserJet 4000

e Support for advanced features such as 1200 DPI, duplex printing, and multiple
paper tray features on printers that provide these capabilities.

* Support for PostScript Level 11 compression.

Note
For more information on Bristol’s X Printer 3.3 visit the Bristol web site at:
http://www.bristol.com

Windows Metafile Format (WMF) Support for Direct Graphics

IDL now supports writing to the Windows Metafile Format (WMF). Thisformat is
used by Windows to store vector graphicsin order to exchange graphics information
between applications. Thisformat is only available on Windows platforms.

To write to this format, you use the SET_PL OT procedure and specify ‘METAFILE’
asthe device. You can then use the DEV I CE procedure to modify the attributes of the
file. The following DEVICE keywords are supported for Metdfile:

CLOSE_FILE INDEX_COLOR
FILENAME SET_CHARACTER_SIZE
GET_CURRENT_FONT SET_FONT
GET_FONTNAMES TRUE_COLOR

Visualization Enhancements in IDL What's New in IDL 5.4

http://www.bristol.com

Chapter 1: Overview of New Features in IDL 5.4 15

GET_FONTNUM TT_FONT
GLYPH_CACHE XSIZE
INCHES YSIZE

For example, the following will create a WMF file for asimple plot:

;Create X and Y Axis data
x=f i ndgen(10)
y=fi ndgen(10)

; Save current device nane
mydevi ce=! D. NAMVE

:Set the device to Metafile
SET_PLOT, ' METAFILE

:Name the file to be created
DEVI CE, FILE='test.enf'

;Create the plot
PLOT, X, Yy

;:Close the device which creates the Metafile
DEVI CE, / CLOSE

; Set the device back to the original
SET_PLOT, nydevice

New Reverse Axis Plotting Example for Object Graphics

A new example has been included with IDL to show how to reverse the order of axis
tick values using Object Graphics. You can run this example by entering
EX_REVERSE_PLOT. PROat the IDL command line. You can view the source for this
example, EX_REVERSE_PLOT. PRO, inthe exanpl es/ vi sual directory.

What's New in IDL 5.4 Visualization Enhancements in IDL

16 Chapter 1: Overview of New Features in IDL 5.4

40 |

60

80

100 =220 60 80 100

Figure 1-3: Reverse Axis Plotting Example

Ability to Specify Values in Points for the IDLgrPattern
Object

Previoudly, IDLgrPattern has used a pattern description that is defined in terms of
pixels units. To facilitate “what you see iswhat you get” (WY SIWY G) behavior, the
units of measure for the PATTERN, SPACING and THICK keywords will now be
points (rather than pixels). With this new functionality, it is easy to re-use the same
pattern on more than one destination device (even if the destinations have varying
resolutions).

Visualization Enhancements in IDL What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 17

Analysis Enhancements in IDL 5.4

The following enhancements have been made in the area of AnalysisintheIDL 5.4
release:

Improved FFT Performance

New Hough and Radon Transform Functions
New Legendre Polynomial Functions

New Laguerre Polynomial Function

New Savitzky-Golay Smoothing Filter

New MAP_2POINTS Function

Enhanced IBETA and IGAMMA Functions
Enhanced ROBERTS and SOBEL Functions
Enhancement to Bessel Functions

Ability to Retrieve the Number of Verticesin IDLanROI
Enhanced MIN_CURVE_SURF Function
Enhanced Probability Functions

Enhanced TRIGRID Function

Enhanced Integration Functions

Enhanced FACTORIAL Function

Enhanced HISTOGRAM Function

Enhanced Curve-Fitting Functions

Improved FFT Performance

The FFT function now uses an improved algorithm that is more efficient at handling
data sets with alength containing powers of 2, 3, or 5. The FFT function in previous
versions of IDL only took advantage of datalengths that are powers of 2. The new
FFT algorithm extends this advantage to powers of 3 and 5. The new FFT
performance is up to three times faster for data setsrich in powers of 2, 3, or 5,
depending on the data set size and platform. In addition, the new FFT ismore

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

18 Chapter 1: Overview of New Features in IDL 5.4

accurate for primes and powers of 2, and more memory efficient, requiring half the
memory for some data sets.

Note

You may notice anegligible difference in results from the FFT function in previous
versions of IDL.

New Hough and Radon Transform Functions

The new HOUGH and RADON functions have been added to IDL. The Hough (P. V.
C. Hough, 1962) and Radon (J. Radon, 1917) transforms are used to detect lines
within two-dimensional images. The Hough transform maps each image pixel into a
sinusoid within the Hough domain, while the Radon transform maps lines within an
image into a single pixel within the Radon domain. Both transforms are widely used
for image processing, remote sensing, computer vision, and seismic analysis. The
Hough transform, in particular, can be used for automatic extraction and
classification of featuresin satellite images. The Radon transform isused in
computed tomography (CT) to reconstruct two-dimensional tissue dicesfrom a
series of X-ray projections.

The following figure shows an example of the use of the new HOUGH function. The
top image shows three lines drawn within arandom array of pixels that represent
noise. The center image shows the Hough transform, displaying sinusoids for points
that lie on the same line in the original image. The bottom image shows the Hough
backprojection, after setting the threshold to retain only those lines that contain more
than 20 points. The Hough inverse transform, or backprojection, transforms each
point in the Hough domain into a straight line in the image.

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 19

MNoise and Lines

Hough Transform

Hough Backprojection

Figure 1: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)

The next figure shows an exampl e of the use of the new RADON function. The top
image is an image of aring and random pixels, or noise. The center image isthe
Radon transform, and displays the line integral s through the image. The bottom
image is the Radon backprojection, after filtering al noise except for the two strong
horizontal stripesin the middleimage.

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

20 Chapter 1: Overview of New Features in IDL 5.4

Pixels
g

Radon Transform

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Theta

Radon Backprojection

Figure 2: Radon Example - Original image (top), Radon transform (center), and
backprojection of the filtered RADON transform (bottom)

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 21

New Legendre Polynomial Functions

Two new functions have been added to IDL for evaluation of Legendre polynomials:

Function Description
LEGENDRE The LEGENDRE function returns the value of the
associated Legendre polynomial.
SPHER_HARM The SPHER_HARM function returns the value of the
spherical harmonic, which is afunction of two
coordinates on a spherical surface.

Table 1-1: New Legendre Polynomial Functions

New Laguerre Polynomial Function

The LAGUERRE function has been added to IDL for the evaluation of Laguerre
polynomials. Laguerre polynomials are used in quantum mechanics, for example,
where the wave function for the hydrogen atom is given by the Laguerre differential
equation.

New Savitzky-Golay Smoothing Filter

The new SAVGOL function returns the coefficients of a Savitzky-Golay smoothing
filter, which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth anoisy signal.

The following figureillustrates the new SAVGOL function. In this example, we have
created a noisy 400-point vector with 4 Gaussian peaks of decreasing width. Then,
we plot the vector smoothed with a 33-point boxcar smoother (the SMOOTH
function), the vector smoothed with 33-point wide Savitzky-Golay filter of degree 4,
and finally the first derivative of the noisy signal and the first derivative using the
Savitzky-Golay filter of degree 4. Notice how the Savitzky-Golay filter preserves the
high peaks but does not do as much smoothing on the flatter regions, and how the
filter is able to construct a good approximation of the first derivative.

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

22 Chapter 1: Overview of New Features in IDL 5.4

Signal+Noise; Smooth [width33]

0.20
0.10
0.00 HeT I
-0.10

-0.20

Figure 1-4: New Savitzky-Golay Smoothing Filter

New MAP_2POINTS Function

The new MAP_2POINTS function has been added to IDL to return parameters such
as distance, azimuth, and path relating to the great circle or rhumb line connecting
two points on a sphere.

Enhanced IBETA and IGAMMA Functions

The following enhancements have been made to the IBETA and IGAMMA
functions:

» Thefunctions now work on arrays aswell as scalars (provided the arrays have
the same size).

» Thefunctions now fully support double-precision.

 Thenew EPSand ITMAX keywords allow the user to specify the desired
accuracy and number of iterations, respectively.

For more information on specific changesto IBETA and IGAMMA, see “New and
Updated Keywords/Arguments to IDL Routines’ on page 91.

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 23

Enhanced ROBERTS and SOBEL Functions

The ROBERTS and SOBEL functions have been enhanced such that the resulting
image array has the same dimensions and data type as the original array. In previous
versions of IDL, the resulting image array was returned astype INT, regardless of the
data type of the original array.

Enhancement to Bessel Functions

The Bessel functions, BESEL I, BESEL J, and BESELY, have been modified to
accept non-integer orders. Also, the new BESELK function has been added.

Ability to Retrieve the Number of Vertices in IDLanROI

You can now retrieve the number of vertices being used by aregion in an IDLanROI
object. The N_VERTS keyword, used to represent the number of vertices, has been
added to the IDLanROI::GetProperty method to specify a named variable that will
contain the number of vertices currently being used by the region.

For more information on specific changesto IDL Objects, see “New and Updated
Keywords/Arguments to IDL Object Methods’ on page 67.

Enhanced MIN_CURVE_SURF Function

The SPHERE and CONST keywords have been added to the MIN_ CURVE_SURF
function to support minimum curvature surface interpolation over a sphere.

For more information on specific changesto MIN_CURVE_SURF, see “New and
Updated Keywords/Arguments to IDL Routines” on page 91.

Enhanced Probability Functions

The CHISQR_PDF, F_PDF, GAUS PDF, and T_PDF functions have been enhanced
to accept array values for al arguments.

Enhanced TRIGRID Function

The TRIGRID function has been enhanced to alow specification of irregularly
spaced rectangular output grids. The new XOUT and YOUT keywords can be set to
vectors specifying the output grid X and Y values.

Enhanced Integration Functions

The QROMB, QROMO, and QSIMP functions are now fully re-entrant, and can be
called from within the user-supplied integration functions. This allows you to

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

24 Chapter 1: Overview of New Features in IDL 5.4

perform double (or multiple) integration by calling QROMB with a user-supplied
IDL function that calls QROMB within itself.

Enhanced FACTORIAL Function

The FACTORIAL function now acceptsinput as either ascalar or an array.
Additionally, the new UL 64 keyword has been added so that the results can be
returned as unsigned 64-bit integers.

Enhanced HISTOGRAM Function

The NBINS keyword has been added to the HISTOGRAM function to allow the user
to explicitly specify the number of binsto use.

Enhanced Curve-Fitting Functions

Severa curve-fitting routines have been modified to make them consistent with one
another, to correct the value returned by the SIGMA keyword, and to add
functionality. The following changes have been made:

LINFIT

» For consistency with other curve-fitting routines, the COVAR and YFIT
output keywords have been added.

» For consistency with other curve-fitting routines, the SDEV keyword has been
replaced by MEASURE_ERRORS, which has the same definition and
meaning as SDEV. For backwards compatibility, the SDEV keyword is still
accepted, but new code should use the MEASURE_ERRORS keyword.

LMFIT

» Thedefinition of the SIGMA keyword has changed. If you do not specify error
estimates (viathe MEASURE_ERRORS keyword), then you are assuming
that your user-supplied model (or the default quadratic), is the correct model
for your data, and therefore, no independent goodness-of-fit test is possible. In
this case, the values returned in SIGMA are multiplied by the correction factor
SQRT(CHISQ/(N-M)), where N is the number of pointsin X, and M isthe
number of coefficients. In versions of IDL prior to 5.4, this correction factor
was not being applied. For example, the following code yields different results
inIDL 5.3and IDL 5.4

; Define an 11-el enent vector of independent variabl e data:
X = DI NDGEN(11)

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 25

Define an 11-el ement vector of dependent variable data:
Y =3 - 4*x + 5*x72 + 0.5*randomm(1, 11)

Conpute fit:
A=1[0, 0, 0]
result = LMFIT(X, Y, A Sl GVA=sigma)
PRI NT, ' Coefficients: A
PRI NT, 'Standard errors: ', sigm

IDL 5.3 printsincorrect results:

Coefficients: 2.8768212 - 3. 9525263 5. 0026831
Standard errors: 0. 76185273 0. 35445878 0. 034139437

IDL 5.4 prints the correct results:

Coefficients: 2.8768212 -3.9525263 5. 0026831
St andard errors: 0. 28439646 0.13231799 0.012744110

For more information, see section 15.2 of Numerical Recipesin C (Second
Edition).

« The WEIGHTS keyword is obsolete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword.
Using the WEIGHTS keyword, SQRT(LY/WEIGHTJ]i]) represents the
measurement error for each point Y[i]. Using the MEASURE_ERRORS
keyword, the measurement error for each point is represented as simply
MEASURE_ERRORS]i]. The following code demonstrates the difference
between the use of the old WEIGHTS keyword and the new
MEASURE_ERRORS keyword:

Assume we have the following data and measurement errors:

Define an 11-el ement vector of independent variable data:
X = FI NDGEN(11)

Define an 11-el enent vector of dependent variable data:
Y =3 - 4*x + 5*x"2

; Assume Gaussi an neasurenent errors for each point:
measure_errors = REPLI CATE(O.5, 11)

Using the obsolete WEIGHTS keyword, we would compute the fit as follows:

A=1[0, 0, 0]
result = LMFIT(X, Y, A WElICGHTS=1/nmeasure_errors”2, SI GVA=si gnma)

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

26 Chapter 1: Overview of New Features in IDL 5.4

PRI NT, ' Coefficients: LA
PRI NT, 'Standard errors: ', sigm

Using the new MEASURE_ERRORS keyword, we now compute the fit as
follows. Note that the same measurement errors are used:

A =10, 0, 0]
result = LMFIT(X, Y, A MEASURE ERRORS=neasure_errors, $

SI GVA=si gnm)
PRI NT, ' Coefficients: LA
PRI NT, 'Standard errors: ', sigma

In both cases, IDL prints:

Coefficients: 2.99998 - 3. 99999 5. 00000
St andard errors: 0. 380926 0.177229 0. 0170697
POLY_FIT

A new MEASURE_ERRORS keyword has been added to POLY_FIT,
replacing the POLY FITW function. Note, however, that the definition of the
MEASURE_ERRORS keyword to POLY _FIT is different from the definition
of the Weights argument to POLY FITW. In POLY FITW, SQRT(1/Weightg[i])
represented the measurement error for each point Y[i]. Now, for consistency
with other curve-fitting routines, POLY _FIT defines the measurement error
for each point as MEASURE_ERRORSY]i]. Code using POLY FITW will
continue to work as before, but new code should use POLY _FIT. If you wish
to convert existing code using POLY FITW to use the new
MEASURE_ERRORS keyword to POLY _FIT, you must change the values
you supply. For example, assume we have the following data and
measurement errors:

Define an 11-el ement vector of independent variable data:
X = FI NDGEN(11)

Define an 11-el enment vector of dependent variabl e data:
Y = 3 - 4*x + 5*x"2

; Assune Gaussi an neasurenent errors of 0.5 for each point:
nmeasure_errors = REPLI CATE(O.5, 11)

To compute the weighted second degree polynomial fit using POLY FITW:
wei ght = 1/ neasure_errors”2
result = POLYFI TWX, Y, weight, 2)
PRI NT, ' Coefficients: ", result[*]

Using the improved POLY _FIT function, we can compute the fit as follows:

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 27

; Conpute using the inproved POLY_FIT routine:
result = POLY_FIT(X, Y, 2, MEASURE_ERRORS = neasure_errors)
PRI NT, ' Coefficients: ", result[*]

In both cases, IDL prints:
Coefficients: 3.00032 -4.00015 5. 00002

The Yfit argument to POLY_FIT isnow akeyword YFIT. For backwards
compatibility, the argument will still be accepted.

The Yband argument to POLY _FIT is now akeyword YBAND. For
backwards compatibility, the argument will still be accepted.

The Sgma argument to POLY _FIT is now a keyword Y ERROR. For
backwards compatibility, the argument will still be accepted. Note that the
description of the argument Sgma incorrectly stated that Sgma was the
“standard deviation of the returned coefficients.” Actually, Sgma (now
keyword Y ERROR) is the standard error between YFIT and Y.

The Corrm argument to POLY _FIT is now a keyword COVAR. For
backwards compatibility, the argument will till be accepted. Note that the
description of the argument Corrm stated that Corrm was the “correlation
matrix.” Actually, Corrm (now keyword COVAR) is the covariance matrix.

POLY_FIT now returnsthe fit parameters CHISQ and SIGMA, which give the
chi-sguare goodness-of-fit and the standard deviation of the returned
coefficients, respectively.

A new STATUS keyword has been added to POLY_FIT to alow the function
to return a status value that can be used to programmatically determine
whether the operation was successful.

POLYFITW

The POLY FITW function is obsolete, and has been replaced by the
MEASURE_ERRORS keyword to POLY _FIT.

REGRESS

For consistency with the other curve-fitting routines, the arguments Weights,
Yfit, Const, Sgma, Ftest, R, Rmul, Chisg, and Status are now keywords
MEASURE_ERRORS, YFIT, CONST, SIGMA, FTEST, CORRELATION,
MCORRELATION, CHISQ, and STATUS, respectively. The arguments are
still supported for backward compatibility, but new code should use the
keywords instead.

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

28 Chapter 1: Overview of New Features in IDL 5.4

» Thedéefinition of the MEASURE _ERRORS keyword is different from the
Weights argument that it has replaced. Using the Weights argument,
SORT(1/WMkeightd[i]) represents the measurement error for each point Y[i].
Now, for consistency with other curve-fitting routines, the measurement error
for each point is represented as simply MEASURE_ERRORS]i]. Also, the
RELATIVE_WEIGHT keyword is no longer necessary. Now, if the
MEASURE_ERRORS keyword is not provided, then REGRESS assumes you
want no weighting.

Assume we have the following data:

; Create two vectors of independent variable data:
X1 =7[1.0, 2.0, 4.0, 8.0, 16.0, 32.0]

X2 =[0.0, 1.0, 2.0, 3.0, 4.0, 5.0]

; Conmbine into a 2x6 array

X = [TRANSPOSE(X1), TRANSPCSE(X2)]

; Create a vector of dependent variabl e data:
Y =5+ 3*X1 - 4*X2

The following examples illustrate the difference between the old method and
the new method, with and without weighting:

No weighting:

a d nethod:
Wei ghts = REPLI CATE(1.0, N_ELEMENTS(Y))
; Conpute the fit using multiple |linear regression:
result = REGRESS(X, Y, Wights, yfit, const, Sigma, $
[RELATI VE_WEI GHT)
PRI NT, ' Coefficients: ", result[*]
PRI NT, 'Standard errors: ', sigm

; New nethod. Note that the Wights arguments and
; RELATI VE_VEEI GHT keyword are not needed:
result = REGRESS(X, Y, SIGvA=sigm)

PRI NT, ' COEFFI Cl ENTS: ', resul t[*]
PRI NT, 'Standard errors: ', sigm
In both cases, IDL prints:
Coef ficients: 3. 00000 -3.99999
Standard errors: 1. 38052e- 006 8. 75298e- 006

Weighting:

; Assume Gaussi an neasurenent errors for each point:
measure_errors = REPLI CATE(O0.5, N_ELEMENTS(Y))

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 29

; Ad nethod:

Wei ghts = 1/ neasure_errors”2

Conpute the fit using multiple |inear regression:
result = REGRESS(X, Y, Weights, Yfit, Const, Signm)
PRI NT, ' Coefficients: ', result[*]
PRI NT, 'Standard errors: ', Sigma

; New nethod. Note the change in definition of Wights:

wei ghts = 1/ neasure_errors

result = REGRESS(X, Y, SIGWA=sigm, $
MVEASURE_ERRORS=neasure_errors)

PRI NT, ' Coefficients: ', result[*]

PRI NT, 'Standard errors: ', sigm

In both cases, IDL prints:
Coefficients: 3. 00000 -3.99999
Standard errors: 0. 0444831 0. 282038

SVDFIT

e Thedéfinition of the SIGMA keyword has changed. If you do not specify error
estimates (viathe MEASURE_ERRORS keyword), then you are assuming
that the polynomial (or your user-supplied model) isthe correct model for your
data, and therefore, no independent goodness-of-fit test is possible. In this
case, the values returned in SIGMA are multiplied by the correction factor
SQRT(CHISQ/(N-M)), where N is the number of pointsin X, and M isthe
number of coefficients. In versions of IDL prior to 5.4, this correction factor
was not being applied. For example, the following code yields different results
inIDL 5.3and IDL 5.4

; Define an 11-el enent vector of independent variabl e data:
X = FI NDGEN(11)

Define an 11-el enment vector of dependent variable data:
Y =3 - 4*x + 5*x*2 + 0.5*randomm(1, 11)

; Conpute the quadratic fit:

result = SVDFIT(X, Y, 3, SIGVA=signmm)
PRI NT, ' Coefficients: ', result
PRI NT, 'Standard errors: ', sigm

IDL 5.3 printsincorrect results:

Coefficients: 2.87686 -3.95254 5.00268
St andard errors: 0.761852 0. 354459 0. 0341395

What's New in IDL 5.4 Analysis Enhancements in IDL 5.4

30

Chapter 1: Overview of New Features in IDL 5.4

IDL 5.4 prints the correct results:

Coefficients: 2. 87680 - 3. 95253 5. 00268
St andard errors: 0. 284396 0. 132318 0. 0127441

For more information, see section 15.2 of Numerical Recipesin C (Second
Edition).

The WEIGHTS keyword is obsol ete and has been replaced by the
MEASURE_ERRORS keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the definition of the
MEASURE_ERRORS keyword is not the same as the WEIGHTS keyword.
Using the WEIGHTS keyword, YWEIGHT§][i] represents the measurement
error for each point Y[i]. Using the MEASURE_ERRORS keyword, the
measurement error is represented as simply MEASURE_ERRORSY][i]. The
following code demonstrates the difference between the use of the old
WEIGHTS keyword and the new MEASURE_ERRORS keyword:

Assume we have the following data and measurement errors:

Define an 11-el ement vector of independent variable data:
X = FI NDGEN(11)

Define an 11-el enment vector of dependent variable data:
Y =3 - 4*X + 5*x"2

; Assume Gaussi an neasurenent errors for each point:

neasure_errors = REPLI CATE(0.5, 11)

Using the obsolete WEIGHTS keyword, we would compute the fit as follows:

A=1[0, 0, 0]
result = SVDFIT(X, Y, A=A, VEI GHTS=1/neasure_errors, $

SI GVA=si gna)
PRI NT, ' Coefficients: LA
PRI NT, 'Standard errors: ', signma

Using the new MEASURE_ERRORS keyword, we now compute the fit as
follows. Note that the same measurement errors are used:

A =10, 0, 0]
result = SVDFIT(X, Y, A=A, MEASURE_ERRORS=neasure_errors, $

SI GVA=si gnm)
PRI NT, ' Coefficients: LA
PRI NT, 'Standard errors: ', signm

Analysis Enhancements in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 31

IDL Language Enhancements

The following enhancements have been made to the IDL languagein the IDL 5.4
release:

Large File Support for Windows Platforms

New 64-Bit Memory Support

New Support for Reading Compressed Files with Associated Variables
New File Handling Routines

New Date Attributes for Retrieving File Status

New Support for Converting System Times
Improvements for Formatted Input Using READ and READF
New Function for Testing Equality of Arrays

New Function for Multiplying Transposed Arrays

New Program Control Statements

Enhanced RESOLVE_ROUTINE Function

CALL_EXTERNAL Enhancement to Automatically Write and Compile
Intermediate Glue Code on the Fly

Enhanced Ability for Spawning Processes

New Support for TCP/IP Client Side Sockets
New Altivec Support for Macintosh

Relaxed Rules for Combining Structures

New C printf-Style Quoted String Format Code
Enhanced WHERE Function

Large File Support for Windows Platforms

IDL 5.4 now supports accessing files larger than 2.1 GB on the Windows platform.
You now can use the 64-bit integer data type to read and write data from files on the
following platforms that support the use of alarge file capable file system:

Windows 95, 98, NT 4.0, 2000 (with NTFS)

What's New in IDL 5.4 IDL Language Enhancements

32

Chapter 1: Overview of New Features in IDL 5.4

* SUN Solaris (Intel and SPARC systems)
« HP-UX

* SGlI Irix

* Compag Tru64 UNIX

When reading and writing to files smaller than 2.1 GB, IDL uses longword integers
for file position arguments (e.g. POINT_LUN, FSTAT) and keywords. When
accessing files larger than 2.1 GB, IDL will automatically use signed 64-bit integers
in order to be able to properly represent the offset.

New 64-Bit Memory Support

IDL 5.4 now provides 64-bit memory support on some platforms which allowsyou to
create individual variablesthat exceed 2.1 GB in size. You can freely exchange . sav
files between 64-bit and 32-bit versions of IDL with the exception that the 32-bit
version of IDL cannot restore more than 2.1 GB of datafrom a. sav file dueto the
32-bit limitation.

Platforms that Support 64-Bit IDL

The platforms that support 64-bit are:
e True4 UNIX on Compag Alpha hardware
e Sun Solaris 7 and 8 on SPARC (64-bit Ultra hardware)
e Linux on Compag Alpha hardware

Note the following on 64-bit version of IDL for Sun Solaris:

e The 32-bit version of IDL for Sun Solariswill continue to be supported but as
a separate 32-bit build. In IDL 5.4, there are now two versions of IDL for Sun
SPARC platforms (a 32-bit version and a 64-bit version). During installation,
you have a choice of which versionsto install. You can select the 32-bit, 64-
bit, or both if needed.

e Torun 64-bit IDL on Sun Solaris, you will need an UltraSparc platform
(sundu) running the 64-bit Solaris 7 (or later) operating system kernel. A 32-hit
Solaris kernel is also available for the UltraSparc, and is commonly installed
on systems with CPUs slower than 200M z unless you take specia action when
installing Solaristo cause the 64-bit kernel to run. 64-bit IDL will not run on
an UltraSparc using the 32-bit OS kernel. To see which kernel you are running,
execute thei sai nf o command at the UNIX prompt:

% /bin/isainfo -b

IDL Language Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 33

If avalue of 32 isreturned, you are running a 32-bit kernel. If avalue of 64 is
returned, you are running a 64-bit kernel. If i sai nf o isnot present on your
machine, you are probably running Solaris 2.6, which is 32-hit.

e The 32-bit version of IDL will run correctly on a 64-bit version of Solaris. You
do not have to install the 64-bit version of IDL unless you require the ability to
access more than 2.1 GB of memory.

e |If you have both the 32-bit and 64-bit versions of IDL installed on Solaris, the
i dl andi dl de commandswill start the 64-bit version. If you wish to start the
32-bit version, you can use the - 32 optionto thei dl ori dl de commands. If
you have only the 32-bit version of IDL installed, thei dl andi dI de
commands will start the 32-bit version.

* TheDXF and Dataminer extensionsto IDL are not available with the 64-bit
Sun Solarisversion of IDL. If you need accessto this functionality, you should
install and use the 32-bit version of IDL (along with the 64-hit version) to
access the DXF and Dataminer extension.

For more information on the Solaris operating system, see Sun Microsystem’s web
page at docs.sun.com as well as the installation instructions included with your Sun
Solaris media.

New Support for Reading Compressed Files with Associated
Variables
You can now read compressed files that have been associated to a variable using the

ASSOC function. In previous releases of IDL, you could not associate variablesto a
file that was opened using the OPEN procedure with the COM PRESS keyword.

Note
Associated file variables cannot be used for output with files opened using the
COMPRESS keyword to OPEN.

What's New in IDL 5.4 IDL Language Enhancements

http://docs.sun.com

34

Chapter 1: Overview of New Features in IDL 5.4

New File Handling Routines

There are six new routinesin IDL 5.4 that enhance IDL’s ability to perform file
handling operations. These functions are:

New Routine Description
FILE CHMOD Changes the access permissions for afile.
FILE DELETE Deletes files and empty directories.
FILE EXPAND_ PATH Returns the full path to afile.
FILE_MKDIR Creates a directory.
FILE TEST Returns whether or not afile exists and attributes
about that file.
FILE WHICH Searches for afilein adirectory path you specify.

Table 1-2: New File Handling Routines in IDL 5.4

New Date Attributes for Retrieving File Status

The FSTAT function in IDL 5.4 now has the ability to return the following

information about file status:
e Creation date of the file

+ Last date the file was accessed
e Last date the file was modified

The values returned are in seconds since 1 January 1970 UTC.

For descriptions of the enhancements to FSTAT, see “New and Updated
Keywords/Argumentsto IDL Routines’ on page 91.

New Support for Converting System Times

The SY STIME function has been enhanced to:

* Format an input argument giving the number of seconds past January 1, 1970
as astring that represents the date in the format:

DOW MON DD HH: MM SS YEAR

IDL Language Enhancements

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 35

where DOW isthe day of the week, MON is the month, DD is the day of the
month, HH is the hour, MM isthe minute, SSis the second, and YEAR isthe
year.

» Output the date string in Universal Time Coordinated (UTC) rather than being
adjusted for the current time zone.

For descriptions of the new argument and keyword to SY STIME, see “New and
Updated Keywords/Argumentsto IDL Routines’ on page 91.

Improvements for Formatted Input Using READ and READF

The READ and READF routines now understand all three possible stream file line
termination conventions on all platforms:

¢ Macintosh— CR
e UNIX —LF
« WindowsDOS — CR/LF

IDL running on any operating system can transparently read from files using any of
these conventions.

New Function for Testing Equality of Arrays

The ARRAY_EQUAL function is afast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
types of the operands are the same.

New Function for Multiplying Transposed Arrays

The new MATRIX_MULTIPLY function has been added to IDL to provide a more
efficient means of multiplying transposed arrays. The MATRIX_MULTIPLY
function calculates the IDL matrix-multiply operator (#) of two (possibly transposed)
arrays. The transpose operation (if desired) is done simultaneously with the
multiplication, thus conserving memory and increasing the speed of the operation.

What's New in IDL 5.4 IDL Language Enhancements

36

Chapter 1: Overview of New Features in IDL 5.4

New Program Control Statements

Three new program control statements have been added in IDL 5.4:

Statement

Description

BREAK

The BREAK statement provides a convenient way to
immediately exit from aloop (FOR, WHILE,
REPEAT), CASE, or SWITCH statement without
resorting to GOTO statements.

CONTINUE

The CONTINUE statement provides a convenient way
to immediately start the next iteration of the enclosing
FOR, WHILE, or REPEAT loop.

SWITCH

The SWITCH statement is used to select one statement
for execution from multiple choices, depending upon
the value of the expression following the word
SWITCH. This statement is similar to the CASE
statement. Whereas CA SE executes at most one
statement within the CASE block, SWITCH executes
the first matching statement and any following
statements in the SWITCH block.

Table 1-3: New Program Control Statements

For more information on IDL’s program control statements, see Chapter 11,
“Program Control” in Building IDL Applications.

Enhanced RESOLVE_ROUTINE Function

The new COMPILE_FULL_FILE keyword has been added to the
RESOLVE_ROUTINE function. When compiling afile to find the routine specified
using the Name argument, IDL normally stops compiling when the desired routine is
found. Set COMPILE_FULL_FILE to cause the entirefile to be compiled regardless
of Name being encountered before the end of thefile.

CALL_EXTERNAL Enhancement to Automatically Write and
Compile Intermediate Glue Code on the Fly

Thenew CALL_EXTERNAL AUTO_GLUE keyword causes CALL_EXTERNAL
to write the intermediate glue code (previously written by IDL users) that converts
the IDL calling convention to the argument list actually needed by the target function.

IDL Language Enhancements

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 37

It then uses the new MAKE_DLL procedure to compile and link the glue code. You
simply need to make the CALL_EXTERNAL call and all of the intermediate glue
codeis created and used quietly behind the scenes on your behalf. The result isthe
ability to call arbitrary functions from a sharable library from IDL without writing a
line of C or worrying about the details of compiling and linking sharable libraries on
Windows, UNIX, and VMS platforms.

Enhanced Ability for Spawning Processes

The SPAWN procedure for UNIX platforms has been enhanced in the following
ways.

e You can now capture the exit status from a child process started by IDL.
e You can how capture stderr from a child process started by IDL.

The SPAWN procedure for Windows platforms has been enhanced in the following
ways.

* You can now capture the exit status from a child process started by IDL.
* You can now capture errors from achild process started by IDL.
e You can hide (minimize) the command interpreter window.

e You can run Win32 executables without using the command interpreter
window.

e You can capture the output from SPAWN and display it in the IDL
Development Environment Log window instead of having it go to the
command interpreter window.

* You can execute processes and specify not to wait.

* You can spawn a subprocess and have the IDL process continue executing in
parallel with the spawned subprocess.

For descriptions of the new arguments and keywords to SPAWN, see “New and
Updated Keywords/Arguments to IDL Routines’ on page 91.

New Support for TCP/IP Client Side Sockets

The new SOCKET procedure, supported on UNIX and Windows platforms, opens a
client side TCP/IP Internet socket as an IDL file unit. Such files can be used in the
standard manner with any of IDL’s input/output routines.

What's New in IDL 5.4 IDL Language Enhancements

38

Chapter 1: Overview of New Features in IDL 5.4

New Altivec Support for Macintosh

With the introduction of the G4 series of PowerPC processors, a new vector unit has
been introduced to the architecture. Called “Altivec” by Motorola and “The Velocity
Engine” by Apple, this unit provides a new set of vector operations which greatly
enhance the performance of processing certain kinds of operations.

IDL 5.4 has added Altivec support for array operations of the following types:

* Byte * Long
* Integer » Unsigned Long
e Complex * Floating-Point

Unsigned Integer
Other operations that have been accelerated:

» Addition * Multiplication

* Subtraction * Division

These accelerated operators apply to array <operator> array calculations as well as
array <operator> scalar and scalar <operator> array calculations.

Relaxed Rules for Combining Structures

IDL 5.4 now allows concatenation and assignment of structures with different but
compatible definitions. For example, consider the following structures:

sl = { nmoosel, a:fltarr(10, 10), b:23}
s2 = { moose2, x:fltarr(100), z:intarr(1) }

These statements are different, but they are compatible in terms of actual memory
layout. In IDL 5.4, the following statements are now allowed which would have
produced errorsin previous releases.

s3 = [s1, s2]
s3[1] = s2

This eliminates a problem commonly encountered with anonymous structures. For
example:

sl = REPLI CATE({ a:fltarr(10,10), b:23 }, 10)
s1[4] = { a: FI NDGEN(10, 10), b:79 }

IDL Language Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 39

In previous versions, the two anonymous structures in these statements are
considered to yield different types and therefore would not have been alowed. In
IDL 5.4, these statements are recognized to be of different types, but still compatible
and the statements are allowed.

New C printf-Style Quoted String Format Code

IDL’s explicitly formatted specifications, which are based on those found in the
FORTRAN language, are extremely powerful and capable of specifying almost any
desired output. However, they require fairly verbose specifications, even in simple
cases. In contrast, the C language (and the many languages influenced by C) have a
different style of format specification used by functionssuch aspri nt f () and
sprintf().Most programmers are very familiar with such formats. In this style,
text and format codes (prefixed by a % character) are intermixed in asingle string.
User-supplied arguments are substituted into the format in place of the format
specifiers. Although less powerful, this style of format is easier to read and writein
common simple cases.

IDL now supports the use of pri nt f -style formats within format specifications,
using a special variant of the Quoted String Format Code in which the opening quote
starts with a % character (e.g. %" or %' rather than " or *). The presence of this %
before the opening quote (with no white space between them) tells IDL that thisisa
pri nt f -style quoted string and not a standard quoted string.

Asasimple example, consider the following IDL statement that uses normal quoted
string format codes:

PRI NT, FORMAT=' ("l have ", 10, " nobnkeys, ", A ".")', $
23, 'Scott'

Executing this statement yields the outpult:
| have 23 nonkeys, Scott.

Using apri nt f -style quoted string format code instead, this statement could be
written:

PRI NT, FORMAT=' (%1 have % nonkeys, %.")', 23, 'Scott'
These above statements are completely equivalent in their action.

For more information on printf-style formats, see “C printf-Style Quoted String
Format Code” in Chapter 8 of Building IDL Applications.

What's New in IDL 5.4 IDL Language Enhancements

40 Chapter 1: Overview of New Features in IDL 5.4

Enhanced WHERE Function
The COMPLEMENT and NCOMPLEMENT keywords have been added to the

WHERE function to return the subscripts and number of zero elementsin the input
array. For descriptions of the new keywordsto WHERE, see “WHERE” on page 120.

IDL Language Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 41
LZW/GIF No Longer Supported in IDL

Research Systemsis no longer able to support reading and writing GIF (Graphics
Interchange Format) images or LZW (Lempel-Zif-Welch) compression for TIFF
images. The LZW technology has been patented by the Unisys Corporation. Note
that any users of GIF/LZW technology are required to enter into a license agreement
with Unisys Corporation.

The following are the related changesto IDL:

e READ_GIF, WRITE_GIF, and QUERY _GIF — These routines no longer
are ableto read, write, and query GIF files. If you use these routinesin any
IDL application, when executing, IDL will produce an error message and
execution will halt.

Asan dternative to GIF, you can use the Portable Network Graphics (PNG)
format. This allows you to easily search and replace many of your callsto
READ_GIF, WRITE_GIF, and QUERY _GIF with READ_PNG,
WRITE_PNG, and QUERY _PNG. If you are currently using any GIF filesin
your IDL applications, you will need to convert them to PNG.

The PNG format is a new standard intended to replace GIF as a dominant
network format. PNG handles 8-bit and 24-bit images and uses alossless
compression scheme to compress images. For more information, see
READ_PNG, WRITE_PNG, and QUERY_PNG in the IDL Reference Guide.

READ_PNG, already an IDL function, has been enhanced in this release so
that you can now call it as a procedure allowing it to be easily used asa
replacement for READ_GIF. Note that the READ_PNG function is still a
supported IDL routine.

* READ_IMAGE, WRITE_IMAGE, and QUERY_IMAGE — These
routines no longer support the ability to access GIF files.

+ DIALOG_READ_IMAGE and DIALOG_WRITE_IMAGE — These
routines no longer support the ability to access GIF files.

* ANNOTATE — Thisroutine no longer supports the ability to save an
annotated image as a GIF file.

e READ_TIFF and WRITE_TIFF — These routines no longer support the
ability to read and write TIFF fileswith LZW compression. If you have created
TIFF filesin previous releases of IDL that use LZW compression, you will no
longer be able to access those filesusing READ_TIFF. If you set the

What's New in IDL 5.4 LZW/GIF No Longer Supported in IDL

42 Chapter 1: Overview of New Features in IDL 5.4

COMPRESSION keyword to WRITE_TIFF to avalue of 1 (previously this
created a TIFF file using LZW compression), the resulting TIFF file will be
created using the PackBits compression.

* LIVE_EXPORT — Thisroutine no longer supports the ability to export a
TIFF file with LZW compression. If you set the COMPRESSION keyword to
avaue of 1 (previously this created a TIFF file using LZW compression), the
resulting TIFF file will be created using the PackBits compression.

* IDL Insight — The Insight application has been removed from IDL. Insight
uses LZW compression for saving compressed project files and therefore can
no longer be included with IDL.

Research Systems apologizes for any inconvenience this may cause. For more
information on this topic and information on existing GIF conversion utilities, visit
www.ResearchSystems.com/IDL.

LZW/GIF No Longer Supported in IDL What's New in IDL 5.4

http://www.ResearchSystems.com/IDL

Chapter 1: Overview of New Features in IDL 5.4 43
File I/O Enhancements

The following file 1/O enhancements have been made in the IDL 5.4 release:
e New Support for ESRI Shapefiles
e Improved Performance with the READ_ASCII Function
e Library Updates
» Enhanced READ_PNG and WRITE_PNG Functions
e Enhancements to the Quality of MPEG Movies
e Windows Input/Output Behavior Improved

New Support for ESRI Shapefiles

IDL now provides support for Shapefiles through the use of a Shapefile Object,
IDLffShape. This object encapsulates all functionality that is required to access a
Shapefile.

For more information on the new | DLffShape class, see Chapter 4, “New Objects’.
Improved Performance with the READ_ASCII Function

The performance of READ_ASCII has been significantly improved when reading
large ASCII files.

Library Updates

The following libraries have been updated in the IDL 5.4 release:

Library New Version Previous Version
DXF 2.003 1.010
PNG 1.05 .89c
ZLIB 113 1.04

Table 1-4: Updated Libraries in IDL 5.4

What's New in IDL 5.4 File /0O Enhancements

44 Chapter 1: Overview of New Features in IDL 5.4

Enhanced READ_PNG and WRITE_PNG Functions

READ_PNG and WRITE_PNG have been changed to read and write PNG filesin
top-to-bottom order. PNG files should now have the correct orientation when
transferred from other applicationsto IDL. An ORDER keyword has been added to
provide compatibility with PNG files written using earlier versions of IDL.

Enhancements to the Quality of MPEG Movies

InIDL 5.4, new keywords have been added to help control the level of compression
and motion prediction used when creating MPEG movies. Now you can weigh the
final quality/file size versus the amount of time needed to create an MPEG movie.

Note
MPEG support in IDL requires aspecia license. For more information, contact
your Research Systems sales representative or technical support.

For more information, see MPEG_OPEN and XINTERANIMATE in “New and
Updated Keywords/Arguments to IDL Routines’ on page 91 and IDLgrMPEG in
“New and Updated Keywords/Arguments to IDL Object Methods’ on page 67.

Windows Input/Output Behavior Improved

In order to make read/write operations under Windows work correctly the way they
do under Unix, read/write operations under Windows are handled differently in IDL
5.4 thanin earlier versions of IDL. In some cases, this may require changesto
existing IDL code. Before we look at an example in which code would need to be
updated, the following is a brief background of thisissue.

Under Microsoft Windows, afileis read or written as an uninterrupted stream of
bytes-thereis no record structure at the operating system level. Linesin aWindows
text file are terminated by the character sequence CR LF (carriage return, line feed).

The Microsoft C runtime library considers afile to be in either binary or text mode,
and its behavior differs depending on the current mode of the file. The programmer
confusion caused by this distinction is a cause of many C/C++ program bugs. IDL is
not affected by this quirk of the C runtime library, and no specia action isrequired to
work around it. Read/write operations are handled the same in Windows asin Unix:
when IDL performs aformatted 1/O operation, it reads/writes the CR/LF line
termination. When it performs a binary operation, it smply reads/writes raw data.

Versions of IDL prior to IDL 5.4 (5.3 and earlier), however, were affected by the
text/binary distinction made by the C library. The BINARY and NOAUTOMODE

File I/O Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 45

keywords to the OPEN procedures were provided to allow the user to change IDL’s
default behavior during read/write operations. In IDL 5.4 and later versions, these
keywords are no longer necessary. They continue to be accepted in order to allow
older code to compile and run without modification, but they are completely ignored
and can be safely removed from code that does not need to run on those older
versionsof IDL.

Some rare Windows-specific code that contains special workarounds using BINARY
or NOAUTOMODE may require modification or removal in order for the program to
work correctly under IDL 5.4. Once modified, such code will be ssimpler, and
portable to other operating systems. For example, assume you used the following
code in the Windows version of IDL 5.3 to write a Unix-format text file:

OPENW 1, 'wunix.txt', /BINARY, /NOAUTOVODE
PRI NTF, 1, '"A line of text'

The above code would create a text file that looks like this;
A line of textLF

where LF isalinefeed character. If you were to run the above codein IDL 5.4, the
resulting text file would look like this:

A line of textCRLF

where CR isthe carriage return character and LF isthe linefeed character. Using IDL
5.4, this code should be updated as follows:

OPENW 1, 'wunix.txt'
WRITEU, 1, 'Aline of text' + STRI NE 10B)

This code creates the following text filein both IDL 5.3 and IDL 5.4:

A line of textLF

What's New in IDL 5.4 File /0O Enhancements

46 Chapter 1: Overview of New Features in IDL 5.4
Development Environment Enhancements

The following enhancements have been made to the IDL Development Environment
inthe IDL 5.4 release:

* Improved IDL Projects

e Importing IDL Preferences & Macros from Previous Releases
* New Preferences for Windows Always on Top for the IDLDE
* New Error Window for Macintosh

* New Editor Window on Macintosh

* Running With Breakpoints in the Macintosh Editor Window

* Improved General Preferences Dialog Box

Improved IDL Projects

IDL Projects, introduced in IDL 5.3, allow you to easily develop applicationsin IDL.
You can manage, compile, run, and create distributions of all the files you will need
to develop your IDL application. All of your application files can be organized so that
they are easier to access and easier to export to other devel opers, colleagues, or users.
IDL Projects are a great benefit to devel opment teams working on alarge project as
well asindividual devel opers managing multiple projects.

Many improvements have been made to IDL Projectsin IDL 5.4 to allow for better
project management as well as for cross-platform compatibility. The following
improvements have been made to IDL Projectsin thisrelease:

* You can now create and name your own groups for storing files aswell as
create your own filters for specifying which types of files are to be stored in a
group. To change your groups, select Project — Groups... The Project
Groups dialog is displayed:

Development Environment Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 47

%]

Project Groups

Groups:

Source Mew
GUI

Data
Bitmaps
Other

[ity
Femoye

e L
Mame: i

L

I [ave oy

File Filters [, zep.]:

Figure 1-5: New Project Groups Dialog

* You can now select multiplefiles for editing, deleting, compiling, and setting
of attributes by pressing the Ctrl and Shift keys when selecting files.

» Projectswill now store al breakpoint information for . pr o files. When you
have created breakpoints for a file and then save the project, the next time you
open that file through your project, the breakpoint information will be restored.

* Only filesthat can be compiled are shown in the Build dialog.

* A new tool bar for the IDL Project window has been added on Windows and
UNIX platformsthat was previously available on the Macintosh platform. This
toolbar allows quick access for frequently used tasks.

: Displays the Project Options dialog for setting or
modifying the current project’s options.

Displays the Add/Remove Files dialog for adding or

removing files from the current project.
iy Compilesall thefilesin the current project.

Builds the current project.

v &

Runs the current project.

Displays the File Properties dialog for setting or
modifying the current file's properties.

What's New in IDL 5.4 Development Environment Enhancements

48 Chapter 1: Overview of New Features in IDL 5.4

Importing IDL Preferences & Macros from Previous Releases

IDL for Windows now has new support for importing preferences and user-defined
macros from a previous release of IDL.

Thefirst time you start IDL for Windows after installing, you will be prompted for
whether or not you want to import preferences or user-defined macros from a
previous release of IDL.

IDL for Windows]

@ ‘wiould wou like to migrate your IDL preferences and macros from a previous inztallation of [DL?

o |

Figure 1-6: Importing IDL Preferences from Previous Releases

Note
It is not necessary to explicitly import macros from previous releases of IDL on
UNIX, VMS, or Macintosh platforms. IDL preferences and macros are
automatically imported on these platforms.

If you do not want to import preferences and user-defined macros, select No and IDL
will start. If you want to import from a previous release, select Yes. The new Import
IDL Preferences dialog displays.

Import IDL Preferences

Select the previous |DL ingtallation that containg the
preferences to migrate ta the new installation.

[Import Macros

Ok I Lancel

Figure 1-7: Import IDL Preferences Dialog

This dialog displays the paths to the previous IDL installations on your machine in
the drop-down list box. Select the path to the previous release of IDL from which to

Development Environment Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 49

import preferences and user-defined macros. If you want to import any user-defined
macros from thisinstallation as well, select the Import Macr os check box. Click
OK. The preferences and user-defined macros are imported and then IDL will start.

Note

If you chose not to import user-defined macros or if you want to import macros
from several previousinstallations, you can select M acros— Import, and select the
previous rel ease from which to import the macros.

New Preferences for Windows Always on Top for the IDLDE

A new preference has been added on the Windows platform so that you can specify
whether graphic windows you create will remain on top of the IDL Development
Environment window or if they can be hidden behind the IDL Development
Environment window when it isin focus. IDL graphics windows that are affected by
this preference are those created through IDL Direct Graphics (i.e. WINDOW,
PLOT, SURFACE, CONTOUR procedures) or in IDL Object Graphics through the
creation of an IDLgrwWindow object.

i i
i Width: 540 Height: |51

ade ¥ 1/4ScreenSize [Aways On Top

ch-draw] RETAIN =0
it RETAIN =1
RETAIN =2

True Type Fon
(Size of glyph cache (nalphsl [256 ‘

Default abjsct graphics rendrer
@ Hardwars [OpeniiL)
C Soltware
“il take effect in the nest session e
K| coed | deew |

Figure 1-8: New “Always On Top” Preference

New Error Window for Macintosh

A new window has been added on the Macintosh platform for displaying compilation
errors. During compilation, the Error Window will display all the errors encountered.

What's New in IDL 5.4 Development Environment Enhancements

50

Chapter 1: Overview of New Features in IDL 5.4

Clicking on the error displays that line of the program that contains the error in the
IDL Editor window.

O IDL Error Window =)=
Error: Procedure header must appear first and only once: TEST
0 File: RS1:DL 5.4 :examples ;project demo_praj.pro
Line: 44 PROtest
Error: Procedure header must appear first and only once : TESTZ
0 File: RS1:IDL 5.4 :examples ;project demo_praj.pro
Line

: 48 PROtest2

IDL Encountered 2 errors while compiling

Figure 1-9: New Error Window for Macintosh

New Editor Window on Macintosh

The Editor window has been improved and now has a button bar with a path box and
an icon which indicates whether the file is writable or read-only. The buttons on the
button bar from left to right are Save, Print, Compile, and Run and are provided for
ease of access during editing. The path box is simply an informational box and is not
editable. Theicon at the right side of the button bar shows a pencil to indicate the file
iswritable, or alock to indicate thefile is read-only.

Multiple Panes in the Editor Window

You can create multiple editing panes within the Editor window enabling you to edit
multiple sections of the program without having to scroll back and forth. To open a
second pane, click on the button at the top of the vertical scroll bar on the right and
drag it until a second horizontal base is seen. When you release the mouse button a
second pane with the same program appears. More than two panes are possiblein an
Editor window, as long as each pane exceeds the minimum size necessary.

The Breakpoint Column

On the l€eft side of each pane in the Editor window is a border used to display break
points, flag compiler errors, and the current executing line of code. Rows with tick

Development Environment Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 51

marks indicate program lines with executable IDL statements. You can set and unset
breakpoints on these lines by clicking on the tick mark or breakpoint. Click on the
tick mark to set the breakpoint, and click on the disabled breakpoint to display the
tick mark again.

The Line Box

The line number button box at the bottom left of an IDL Editor window displays the
line number of the insertion point in the active pane. To relocate the cursor on another
line in the same pane, click in the box and specify the line number inthe Go To Line
field of the new dialog box. Clicking the line number box is a shortcut for the Go To
Line option from the Search menu for the active pane in the Editor window.

Function Drop Down List

The button with parentheses and a down arrow to the right of the Line box brings up
adrop down list containing the functions and procedures defined in the current . pr o
file. Choosing afunction or procedure from the list moves the cursor to that function
or procedure definition in the active pane of the Editor window.

™
m

dicom_example.pro

=

]

RO Dicom_ExampleEventHdlr, event

i IE‘ Path: |Speedy:RSI:IDL 5.4 iexamples data_access :dicom_example pro

[+

3 Thiz is the event processing routine that tokes care of the events being
3 =ent to it from the XManager.

WIDGET_COMTROL, GETMWALUE=control, event.id

CASE control OF

EHEODEm

FRO Dicom_ExampleEventHdlr, ewvent

3 Thiz is the event processing routine that tokes care of the events being
3 =ent to it from the XManager.

WIDGET_COMTROL, GETIWALUE=control, event.id
CASE control OF

"INFO": Dicom_Exomplelnfo, ewvent.top

[+]®[«]]

FRO Dicom_ExampleEventHdlr, ewvent

3 Thiz is the event processing routine that tokes care of the events being
3 =ent to it from the XManager.

WIDGET_COMTROL, GETMWALUE=control, event.id

CASE control OF

"INFO": Dicom_Exomplelnfo, ewvent.top
"EX|T": WIDGET_COMTROL, event.top, (DESTROY

"PICK": Dicom_ExampleDraw, ewvent.top

]

Line : 167 1]

Figure 1-10: The IDL Editor Window

What's New in IDL 5.4 Development Environment Enhancements

52 Chapter 1: Overview of New Features in IDL 5.4

Running With Breakpoints in the Macintosh Editor Window

When you set breakpointsina. pr o file and compile and run the program, the Editor
window buttons change to allow you to step through the program using the
breakpoints. The four buttons at the top of the window become step buttons (see the
following figure) which call the various executive commands for stepping through a
program: at the left is Step Out which calls. OUT, next is Step Over which calls

. STEPOVER, then Step | n which calls. STEP, and the fourth button is Continue
which calls. CONTI NUE.

demo_draw.pro ==

O
% IE‘ Path: |Speedy:RSI:IDL 5.4 examples :demno :dernosre :dermo_draw pro | 7

3
| pro demo_draw, olindow, oView, debug=debug

H
;Procedure DEMO_DRAM: call olindow->0raw, ofiew
swrapping the call in lexcept=8 if not DEBUG.

H
i10n some platforms, when |DLgrHindow::Drow is invoked, math errors
;ie.g. "¥ Program caused arithmetic error: Floating illegal
joperand" } are printed. DEMO_DRAM exists to supress the printing of
i these errors.

H
iFlush and print any accumulated math errars
H
J|void = check_math{/print)
H
15ilently accumulate any subsequent math errors, unless we are debugging.

H
J|origoexcept = lexcept
lexcept = {[8, 2]}[keyword set{debug}]

H
H =

H

| olindow=>Draw, ofien

H
;Silently {unless we are debugging} flush any accumulated math errors.
H

Line : & 0

]

Figure 1-11: Running with Breakpoints in the Editor Window

Development Environment Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 53

Improved General Preferences Dialog Box

—General Preferences

Lines to Save in Log Window:
Number of Recent Files: -
Command Recall Buffer Size:
Anchor Command Window at of Screen

Default Text Format For:
Editor Windows...
Text and List Widgets...

Other Widgets...

[4 Use Debugger

[Ask to Save Files on Compile

[Confirm Quit

[Change Working Directory on Open
[Save Command History

[Auto Complete Command Line

[Interpret Unix/D0S Paths

[Save Breakpoints on Quit

[Confirm reset_session

Figure 1-12: The General Preferences Dialog

These preferences control the general appearance and behavior of IDL. The
following two selections have been added to the General Preferences dialog box.

Auto Complete Command Line

If checked this option enables IDL to compare commands as they are being typed at
the command line prompt against the commands in the recall buffer. IDL auto
completes the command when a unique match to a previous command is found. This
is particularly useful for commands used quite often, such as Print.

Save Breakpoints on Quit

If selected, all IDL program breakpoints are saved from session to session until this
check box is deselected. When this option is deselected, all saved breakpoints are
cleared upon exiting IDL.

What's New in IDL 5.4 Development Environment Enhancements

54 Chapter 1: Overview of New Features in IDL 5.4
Installation and Licensing Enhancements

The following enhancements have been madeto IDL Installation and Licensing in
the IDL 5.4 release:

* New Licensing Wizard
* Improved Floating License Management Utilities

* New QUEUE Startup Command Line Option
New Licensing Wizard

The new licensing wizard for Windows and UNIX platforms has been designed with
user convenience in mind. The wizard alows you to easily create and send a license
request. The new request process automatically recognizes all installed Research
Systems software products so that you need only asingle license file to run any
Research Systems product. When your licensefile arrives, the wizard automatically
recognizes where you haveinstalled IDL and guides you to savethe licensefilein the
appropriate location.

Product Licensing

Enter evaluation licenses for
Fiesearch Systems’ products.

Fequest a permanent licenze, enter a
licenze or view and modify an existing
. license.

Help | Exit |

Figure 1-13: New Licensing Wizard
For more information, see your Installation Guide.
Improved Floating License Management Utilities

Thisversion of IDL offers the FLEXIm License Manager Control Panel, asimple
graphical interface that easily allows you to configure your license manager service
for floating licenses. Under the Setup tab, you can browse to select the appropriate
filesand with aclick of the mouse, arrange to have the license manager automatically

Installation and Licensing Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4

55

started any time your server is booted. Other features of this utility allow you to start
or stop the license manager and to complete simple diagnostics with a click of the

mouse.

FLEXIm License Manager

Contral ~ Setup | Licensesl Diagnosticsl About I

— Setup of License Manager

Service Name IFLEXIm License Manager j

Imard. exe Bians | IEI:\HSI\IDL54\bin\bin.xSB\Imgrd.exe

License File Bians | IEI:\HSI\Iicense\Iicense.dat
Debug Log C:ARSIMicensehDebug.log
Fie Browse | I

¥ Start Server at Power-Up ¥ Use NT Services Femove |

QK I Cancel | Lol

Figure 1-14: New FLEXIm License Manager Control Panel

New QUEUE Startup Command Line Option

Improved IDL functionality now allows users of counted floating licenses to choose
to start IDL with the new QUEUE argument, assuring that alicense will beissued for
IDL before beginning an IDL task such as a batch processing job. Using this method
of starting IDL when a counted licenseisunavailable, IDL will not issue a prompt for
licensing, but will continue to wait until one becomes available. Using the new
QUEUE startup switch is especially useful during batch processing since previoudly,
the IDL command log window message, asking if you wanted to wait for an available
license, was unavailable for viewing. To start IDL with the new QUEUE option, use
one of the following methods:

Platform

Method

UNIX

Enter the following at the UNIX prompt:
idl -queue

What's New in IDL 5.4

Table 1-5: QUEUE Startup Command Line Option

Installation and Licensing Enhancements

Chapter 1: Overview of New Features in IDL 5.4

56
Platform Method
VMS Enter the following at the VM S prompt:
I DL / QUEUE
Windows Change the shortcut properties of the desktop IDL 5.4 icon so

the target line reads:

installed IDL.

C.\RSI-Di rectory\bin\bin.x86\idl de. exe -queue
whereRSI - Di r ect ory isthe directory where you have

Table 1-5: QUEUE Startup Command Line Option

Installation and Licensing Enhancements

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 57
Application Development Enhancements

The following enhancements have been made in the IDL 5.4 release.
Modifications to the DIALOG_PICKFILE Function

The FILTER keyword to DIALOG_PICKFILE has been enhanced to alow you to
specify an IDL variable containing a string value or an array of string values for
filtering the filesin the file list. This keyword is used to reduce the number of filesto
choose from. If the value contains a vector of strings, multiple filters are used to filter
thefiles.

For example, you may want to include afilter so that only files of type. j pg, . ti f,
or . png show in the file selection window. To accomplish this, you would use:

file = DIALOG Pl CKFI LE(/ READ, $
FILTER = ['*.jpg', '*.tif', '*.png'])

Thiswould result in the following dialog:

Pleaze Select a File for Reading EHE
Lookire [3 ta =l & o
& avhirpng muscle.jpg
endocell.jpg people.jpg
examples. hf tbeellz.jpg
image. kif ose.jpg
File name: I Open I
Files of lype: I"_ipg;".tif;".png j Cancel |

Figure 1-15: Example of DIALOG_PICKFILE Filter

Note

On UNIX, the FILTER keyword does not support specifying more than onefilter. If
you specify more than onefilter, all filesin the current directory will be displayed.

What's New in IDL 5.4 Application Development Enhancements

58 Chapter 1: Overview of New Features in IDL 5.4

Additional Support for Calling Online Help from Your
Application
Two keywords have been added to the ONLINE_HELP procedure to allow you to:
* AccessaWindows HTML Help file with the new HTML_HELP keyword.

» Display the Contents window of the Help system with the new TOPICS
keyword.

For more information on specific changesto ONLINE_HELP, see*“New and Updated
Keywords/Argumentsto IDL Routines’ on page 91.

Application Development Enhancements What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 59
IDL Wavelet Toolkit Enhancements

The IDL Wavelet Toolkit version 1.1 offers enhanced functionality and new features.
e Enhanced datainput for ASCII datafiles, especialy for “time-series’ data
¢ Implementation of the continuous wavelet transform

« New Morlet and Paul wavelet functions for use with the continuous wavel et
transform

» Improved visualization for the 3D wavelet power spectrum

&l WPS: Sine wave increasing frequency M= E3
File Edit “iew

Wavelet options

-

Family: I Paul - l
T 0
Order: 2
Energy scaling

= |
" Decibels= 10Log[lw]"2]

Cutaff [db]

Contours I Lines Off 'l
|C0|DIS uli3 'l I | Filled

Surface I kit
Surface ™
Iv | 3D

v | Colar

Significance
I 3D A " 01% = l

 Magnitude:

Power {x1 05)

|Power at [295.0, 5,500, 761.638) = 761.638 |

Figure 1-16: The 3D wavelet power spectrum with the Paul continuous wavelet.

What's New in IDL 5.4 IDL Wavelet Toolkit Enhancements

60

New Functions

Chapter 1: Overview of New Features in IDL 5.4

The following table describes the new functions for the IDL Wavelet Toolkit. These
functions are accessible either from the Wavelet Toolkit applet, or directly from the

IDL command line.

Command Description
WV_CWT Returns the one-dimensional continuous wavelet
transform of the input array. The transform is
done using a user-inputted wavel et function.
WV_DENOISE Uses the wavelet transform to filter (or

de-noise) amulti-dimensional array.

WV_FN_GAUSSIAN

Constructs wavel et coefficients for the Gaussian
wavel et function.

WV_FN_MORLET

Constructs wavel et coefficients for the Morlet
wavelet function.

WV_FN_PAUL

Constructs wavel et coefficients for the Paul
wavelet function.

Table 1-6: New Wavelet Toolkit functions

New and Updated Keywords/Arguments

Thefollowing isalist of new and updated keywords and arguments to existing
routines in the IDL Wavelet Toolkit.

WV_APPLET
Keyword/Argument Description
Input This argument can now either be a string representing

asave fileto open, or an array of data.

IDL Wavelet Toolkit Enhancements

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 61

WV_CW_WAVELET

Keyword/Argument Description

DISCRETE Set this keyword to include only discrete waveletsin
the list of wavelet functions. Set this keyword to zero
to include only continuous wavelets. The default isto
include all available wavelets.

NO_COLOR If this keyword is set, the wavelet functions will be
drawn in black and white.

NO_DRAW_WINDOW | If thiskeyword is set, the draw window will not be
included within the widget.

VALUE Set this keyword to an anonymous structure of the
form{FAM LY:'’, ORDER 0d} representingthe
initial value for the widget.

WV_PLOT3D_WPS

Keyword/Argument Description

Input This argument can now either be a string representing
the file to open, or an array of data.

SURFACE_STYLE Set this keyword to an integer specifying theinitial
style to use for the three-dimensional surface. Valid
values are:

e 0=Off

e 1=Points
e 2=Mesh

e 3= Shaded
e 4=XZlines
e 5=YZlines
e 6=Lego

o 7=Legofill

What's New in IDL 5.4 IDL Wavelet Toolkit Enhancements

62 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Utilities

IDL 5.4 now contains utilities that can be used in several ways:
» Asstand-alone applications
» Astoolsfor helping you create applications
» Embedded within IDL applications that you develop

All of these utilitiesarelocated inthel i b/ utiliti es directory and have been
added to your path at install time. Some of these utilities existed in previous versions
of IDL but have been improved.

These utilities may be updated in subsequent IDL releases to take advantage of new
features and technol ogies.

New and Existing IDL Utilities

Thefollowing table liststhe IDL utilities. Note that utilities that existed in previous
versions have been listed here since they have moved within the directory structure.

Utility Description

XBM_EDIT The XBM_EDIT utility allows you to create and edit
icons for use with IDL widgets as bitmap labels for
widget buttons. This utility wasinthel i b directory in
previous releases. It is now located in the
lib/utilities directory.

XDISPLAYFILE The XDISPLAY FILE utility displaysan ASCII text
fileusing awidget interface. Thisutility wasinthel i b
directory in previous releases. It is now located in the
lib/utilities directory.

XDXF The XDXF procedure is a utility for displaying and
interactively manipulating DXF objects.
XFONT The XFONT utility creates a modal widget for

selecting and viewing an X Windows font. This utility
wasinthel i b directory in previous releases. It is now
located inthel i b/ utilities directory.

Table 1-7: New and Existing IDL Utilities

New and Enhanced IDL Utilities What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 63

Utility

Description

XINTERANIMATE

The XINTERANIMATE procedure displays an
animated sequence of images using off-screen pixmaps
or memory buffers. This utility wasinthel i b
directory in previous releases. It is now located in the
lib/utilities directory.

XLOADCT

The XLOADCT utility displays the current color table
and allows you to select a different color table to be
loaded from a predefined color tablelist. This utility
wasinthel i b directory in previousreleases. It is now
locatedinthel i b/ utilities directory.

XMTOOL

The XMTOOL utility displaysalist of widgets
currently being managed by the XMANAGER. This
utility wasinthel i b directory in previous releases. It
isnow located inthel i b/ utilities directory.

XOBJVIEW

The XOBJVIEW utility can be used to quickly and
easily view and manipulate IDL Object Graphics on
screen. It displays given objectsin an IDL widget with
toolbar buttons and menus providing functionality for
manipulating, printing, and exporting the resulting
graphic. This utility wasin thel i b directory in
previous releases. It is now located in the
lib/utilities directory.

XPALETTE

The XPALETTE utility allows you to create and
modify color tables using the RGB, CMY, HSV, or
HLS color systems. This utility wasinthel i b
directory in previous releases. It is now located in the
lib/utilities directory.

XPCOLOR

The XPCOLOR procedure alows you to adjust the
value of the current foreground plotting color,
IP.COLOR. The new plotting foreground color is
saved in the COLORS common block and loaded to

the display.

XPLOT3D

The XPLOT3D utility is used to create and
interactively manipulate 3D plots.

Table 1-7: New and Existing IDL Utilities

What's New in IDL 5.4

New and Enhanced IDL Utilities

64

Chapter 1: Overview of New Features in IDL 5.4

Utility

Description

XROI

The new XROI procedureis autility for interactively
defining and obtaining information about regions of
interest. Freehand and polygon ROIs can be drawn,
and information such as minimum, maximum, and
mean pixel values and histogram plots can be

displayed.

XSURFACE

The XSURFACE utility can be used to quickly and
easily view surface plots. Different controls are
provided to change the viewing angle and other plot
parameters. This utility wasinthel i b directory in
previous releases. It is now located in the
lib/utilities directory.

XVAREDIT

The XVAREDIT utility allows you to edit any IDL
variable. Thisutility wasinthel i b directory in
previous releases. It is now located in the
lib/utilities directory.

XVOLUME

The new XVOLUME procedureisadutility for viewing
and interactively manipulating volumes and
isosurfaces.

Table 1-7: New and Existing IDL Utilities

New Keywords/Arguments to Existing IDL Utilities

Thefollowing isalist of the new keywords to existing IDL utilities:

XOBJVIEW
Keyword/Argument Description
BACKGROUND Set this keyword to athree-element [r, g, b] color

vector specifying the background color of the
XOBJVIEW window.

DOUBLE_VIEW

Set this keyword to force XOBJVIEW to set the
DOUBLE property on the IDLgrView that it usesto
display graphical data.

New and Enhanced IDL Utilities

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 65

Keyword/Argument Description

REFRESH Set this keyword to the widget 1D of the XOBJVIEW
instance to be refreshed. To retrieve the widget 1D of
an instance of XOBJVIEW, first call XOBJVIEW
with the TLB keyword. To refresh that instance of
XOBJVIEW, call XOBVIEW again and set
REFRESH to the value retrieved by the TLB keyword
inthe earlier call to XOBJVIEW.

TLB Set this keyword to a named variable that upon return
will contain the widget ID of the top level base.

What's New in IDL 5.4 New and Enhanced IDL Utilities

66 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Objects

This section describes the following:
* New Object Classes
* New Object Methods
* New and Updated Keywords/Arguments to IDL Object Methods

New Object Classes

The following table describes the new object classesin IDL 5.4:

Object Class Description

IDLffShape An object that contains geometry, connectivity and
attributes for graphics primitives.

New Object Methods

New and existing IDL Object Graphics classes have been updated to include the
following new methods:

New Methods Description

IDLffShape::AddAttribute This method adds an attribute to a
Shapefile.

I DLff Shape::Cleanup This method performs all cleanup on the
Shapefile object.

IDL{fShape::Close This method closes a Shapefile.

IDL{fShape::DestroyEntity This method destroys the specified entities
of a Shapefile.

I DLffShape::GetAttribute This method retrieves the attributes for the
entities you specify.

I DLffShape::GetEntity This method returns an array of Shapefile
entity structures.

| DLffShape::GetProperty This method returns the values of
properties associated with the Shapefile
object.

New and Enhanced IDL Objects What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 67

New Methods

Description

I DLffShape::Init

This method initializes or constructs a
Shapefile abject.

IDLffShape::Open

This method opens a specified shapefile.

I DLffShape::PutEntity

This method inserts an entity into the
Shapefile object.

I DLffShape:: SetAttributes

This method modifies the attributes for a
specified entity in a Shapefile object.

New and Updated Keywords/Arguments to IDL Object

Methods

The following table describes the new and updated keywords/argumentsto I DL

objects.

IDLanROIl::AppendData

Keyword/Argument

Description

X, Y, Z

The values specified with these arguments are now
maintained as double-precision if in the Init or
SetProperty method the input data was of type
DOUBLE or if the DOUBLE keyword was set.
Otherwise, the values are maintained as single-
precision.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable specified with
these keywords are now double-precision.

IDLanROI::ComputeGeometry

Keyword/Argument Description
AREA The value returned in the variable you specify with
this keyword are now double-precision.
CENTROID The value returned in the variable you specify with
this keyword are now double-precision.
PERIMETER The value returned in the variable you specify with

this keyword are now double-precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

68

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

SPATIAL_SCALE

The value for this keyword may now be double-
precision and will no longer be converted to single-
precision.

IDLanROI::ComputeMask

Keyword/Argument

Description

LOCATION

The value for this keyword may now be double-
precision and will no longer be converted to single-
precision.

IDLanROI::GetProperty

Keyword/Argument Description
N_VERTS Set this keyword to a named variable that will contain
the number of vertices currently being used by the
region.
ROI_XRANGE, The values returned in the variable specified with
ROI_YRANGE, these keywords are now double-precision.
ROI_ZRANGE
IDLanROI::Init
Keyword/Argument Description
X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input dataiis of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, the values are stored as single-precision.
DATA The value for this property is now stored as double-
precisionif theinput dataisof type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.
DOUBLE Set this keyword to indicate that data provided by any

of the X, Y, or Z arguments or the DATA keyword
will be stored in this object as double-precision
floating-point.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 69

IDLanROI::RemoveData

Keyword/Argument Description
XRANGE, YRANGE, The values returned in the variabl e specified with
ZRANGE these keywords are now double-precision.

IDLanROIl::ReplaceData

Keyword/Argument Description

X, Y,Z The values specified with these arguments are now
maintained as double-precision if in the Init or
SetProperty method, the inputted data was of type
DOUBLE or if the DOUBLE keyword was set.
Otherwise, the values are maintained as single-

precision.
XRANGE, YRANGE, The values returned in the variabl e specified with
ZRANGE these keywords are now double-precision.
IDLanROIl::Rotate
Keyword/Argument Description
CENTER The values for this keyword may now be double-
precision and will no longer be converted to single-
precision.
IDLanROIl::Scale
Keyword/Argument Description
SX, Sy, Sz The values for these arguments may now be double-
precision and will no longer be converted to single-
precision.

What's New in IDL 5.4 New and Enhanced IDL Objects

70

IDLanROI:: Translate

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

T, Ty, Tz

The values for this argument may now be double-
precision and will no longer be converted to single-
precision.

IDLanROIGroup::ComputeMesh

Keyword/Argument

Description

VERTICES

The values returned in this argument are double-
precision if the DOUBLE keyword was set in the
IDLanROI::Init method for any ROI in the group.
Otherwise, the values returned are single-precision.

SURFACE_AREA

The value returned in the variable you specify with
this keyword are now double-precision.

IDLanROIGroup::GetProperty

Keyword/Argument

Description

ROIGROUP_XRANGE,
ROIGROUP_Y RANGE,
ROIGROUP_ZRANGE

The values returned in the variabl e specified with
these keywords are now double-precision.

IDLanROIGroup::Rotate

Keyword/Argument

Description

CENTER

The values for this keyword may now be double-
precision and will no longer be converted to single-
precision.

IDLanROIGroup::Scale

Keyword/Argument

Description

SX, Sy, Sz

The values for these arguments may now be double-
precision and will no longer be converted to single-
precision.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 71

IDLanROIGroup::Translate

Keyword/Argument Description
TX, Ty, Tz The values for this argument may now be double-
precision and will no longer be converted to single-
precision.

IDLgrAxis::GetCTM

Keyword/Argument Description

n/a This method now returns doubl e-precision values.

IDLgrAxis::GetProperty

Keyword/Argument Description

CRANGE The values returned in the variable specified with this
keyword are double-precision.

XRANGE, YRANGE, The values returned in the variable specified with this

ZRANGE keyword are double-precision.
IDLgrAxis::Init
Keyword/Argument Description
AM_PM Set this keyword to an array of 2 stringsto be used for

the names of the AM and PM strings when processing
explicitly formatted dates (CAPA, CApA, and CapA
format codes) with the TICKFORMAT keyword.

DAYS OF WEEK Set this keyword to an array of 7 stringsto be used for
the names of the days of the week when processing
explicitly formatted dates (CDWA, CDwA, and
CdwaA format codes) with the TICKFORMAT

keyword.

LOCATION The value for this property is now stored as double-
precision.

What's New in IDL 5.4 New and Enhanced IDL Objects

72

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

MONTHS

Set this keyword to an array of 12 strings to be used
for the names of the months of the year when
processing explicitly formatted dates (CMOA,
CMOoA, and CmoA format codes) with the
TICKFORMAT keyword.

RANGE

The value for this property is now stored as double-
precision.

TICKFORMAT

1. Thiskeyword may now be set to either asingle
string or an array of strings. Each string
correspondsto alevel of the axis.

2. If any of the strings is the name of a callback
function, the third argument to that function (that
is the argument indicating the value of the
tickmark) will be double-precision (rather than
single-precision).

3. If any of the stringsis the name of a callback
function and if the TICKUNITS keyword is set to
one or more non-empty strings, the callback
function will be called with four parameters. Axis,
Index, Value and Level, where:

* Axis, Index, and Value are the same as before.

» Level isthe Index of the axislevel for the current
tick value to be labelled (Level indices start at 0).

TICKINTERVAL

Set this keyword to a scalar indicating the interval
between major tick marks for the first axis level. The
default value is computed according to the axis
RANGE and the number of major tick marks
(MAJOR). This keyword takes precedence over
MAJOR.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 73

Keyword/Argument

Description

TICKLAYOUT

Set this keyword to a scalar that indicates the style to
draw each level of the axis.Valid values are;

* 0— Theaxisline, major tick marks, and tick
labels are drawn.

* 1 — Only thelabelsfor the major tick marks are
drawn.

» 2— Each major tick interval is outlined by a box.

TICKUNITS

Set this keyword to a string (or vector of strings) to
indicate the units to be used for axistick labeling.
Valid values are:

* “Numeric” (the default)
« “Year

* “Month”

+ “Day”

* “Hour”

* “Minute’

* “Second”

e “Time" — Usethisvalueto indicate that the units
are generic time units. IDL will compute
appropriate default intervals and tick formats
based on the range of values covered by the axis.

You can specify more than one type of unit. The axis
levelswill be drawn in the order in which you specify
the strings, with the first unit being drawn nearest to
the primary axisline.

TICKLEN

The value for this property is now stored as double-
precision.

TICKVALUES

The value for this property is now stored as double-
precision.

XCOORD_CONYV,
YCOORD_CONYV,
ZCOORD_CONV

The value for these propertiesis now stored as
double-precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

74 Chapter 1: Overview of New Features in IDL 5.4

IDLgrBuffer::GetTextDimensions

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value of this method is now double-precision.

IDLgrBuffer::PickData

Keyword/Argument Description

XYZLOCATION The values returned in this variable are now double-
precision.

IDLgrClipboard::GetTextDimensions

Keyword/Argument Description

DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value of this method is now double-precision.

IDLgrColorbar::ComputeDimensions

Keyword/Argument Description

n/a This method now returns the dimensions of a colorbar
object as double-precision values.

IDLgrColorbar::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The values returned in the variable specified with
ZRANGE these keywords are now double-precision.

IDLgrColorbar::Init

Keyword/Argument Description

TICKLEN The value for this property is now stored as double-
precision.

New and Enhanced IDL Objects What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4

75

Keyword/Argument

Description

TICKVALUES

The value for this property is now stored as double-
precision.

XCOORD_CONYV,
YCOORD_CONYV,
ZCOORD_CONV

The value for these propertiesis now stored as
double-precision.

IDLgrContour::GetCTM

Keyword/Argument

Description

n/a

This method now returns doubl e-precision values.

IDLgrContour::GetProperty

Keyword/Argument

Description

GEOM

The values returned in the variable you specify with
this keyword are now either single or double-
precision, depending upon the precision used to store
the geometry.

XRANGE, YRANGE,
ZRANGE

The values returned in the variable you specify with
this keyword are now double-precision.

IDLgrContour::Init

Keyword/Argument Description

Values The values specified with this argument are now
maintained as double-precision if the input datais of
type DOUBLE or if the DOUBLE_DATA keyword is
set. Otherwise, the datais maintained as single-
precision.

ANISOTROPY The values for this property are now stored as double-
precision.

C VALUE The values for this property are now stored as double-

precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

76

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

DATA_VALUES

The values stored in this property are maintained as
double-precision if theinput datais of type DOUBLE
or if the DOUBLE_DATA keyword is set. Otherwise,
the values are maintained as single-precision.

DOUBLE_DATA

Set this keyword to indicate that the object isto store
data provided by either the Values argument or the
DATA_VALUES keyword parameter in double-
precision floating point. Otherwise, the datais stored
in single-precision floating point. IDL converts any
value data already stored in the object to the requested
precision, if necessary.

DOUBLE_GEOM

Set this keyword to indicate that the object isto store
data provided by any of the GEOMX, GEOMY, or
GEOMZ keyword parameters in double-precision
floating-point. Otherwise, the dataiis stored in single-
precision floating point. IDL converts any geometry
dataaready stored in the object to the requested
precision, if necessary.

GEOMX, GEOMY,
GEOMZ

The values stored in these properties are maintained
as double-precision if the input datais of type
DOUBLE or if the DOUBLE_DATA keyword is set.
Otherwise, the values are maintained as single-
precision.

MAX_VALUE,
MIN_VALUE,
TICKINTERVAL,
TICKLEN,
XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

IDLgrImage::GetCTM

Keyword/Argument

Description

n/a

This method now returns double-precision values.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 77

IDLgrimage::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The values returned in the variabl e specified with
ZRANGE these keywords are now double-precision.

IDLgrImage::Init

Keyword/Argument Description
DIMENSIONS, The values for these properties are now stored as
LOCATION, double-precision.

XCOORD_CONYV,
YCOORD_CONYV,
ZCOORD_CONV

IDLgrLegend::ComputeDimensions

Keyword/Argument Description

n‘a This method now returns doubl e-precision values.

IDLgrLegend::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The value for these propertiesis now stored as
ZRANGE double-precision.

IDLgrLegend::Init

Keyword/Argument Description
ITEM_THICK This keyword now accepts floating-point values.
XCOORD_CONYV, The value for these propertiesis now stored as
YCOORD_CONYV, double-precision.
ZCOORD_CONV

What's New in IDL 5.4 New and Enhanced IDL Objects

78

IDLgrLight::GetCTM

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

n/a

This method now returns double-precision values.

IDLgrLight::Init

Keyword/Argument

Description

LOCATION,

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values for these properties are now stored as
double-precision.

IDLgrModel::GetCTM

Keyword/Argument

Description

n/a

This method now returns double-precision values.

IDLgrModel::Init

Keyword/Argument

Description

TRANSFORM

The value for this property is now stored as double-
precision.

IDLgrModel::Rotate

Keyword/Argument

Description

Axis, Angle

This method now accepts these arguments as doubl e-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 79

IDLgrModel::Scale

Keyword/Argument

Description

Axis, Angle

This method now accepts these arguments as double-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.

IDLgrModel::Translate

Keyword/Argument

Description

Axis, Angle

This method now accepts these arguments as double-
precision values without converting them to single-
precision. The resulting transformation matrix is
stored in the object in double-precision.

IDLgrMPEG::Init

Keyword/Argument

Description

BITRATE

Set this keyword to a double-precision value to
specify the MPEG moviebit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid values:

* MPEG 1— 0.1to 104857200.0
* MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
BITRATE value based upon the value you have
specified for the QUALITY keyword. The value of
BITRATE returned by IDLgrMPEG::GetProperty is
either the value computed by IDL fromthe QUALITY
vaue or the last non-zero valid value stored in this
property.

Note - Only use the BITRATE keyword if changing
the QUALITY keyword value does not produce the
desired results. It is highly recommended to set the
BITRATE to at least several times the frame rate to
avoid unusable MPEG files or file generation errors.

What's New in IDL 5.4

New and Enhanced IDL Objects

80 Chapter 1: Overview of New Features in IDL 5.4
Keyword/Argument Description
IFRAME_GAP Set this keyword to a positive integer value that

specifies the number of frames between | framesto be
created in the MPEG file. | frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
IFRAME_GAP value based upon the value you have
specified for the QUALITY keyword. The value of
IFRAME_GAP returned by
IDLgrMPEG::GetProperty is either the value
computed by IDL from the QUALITY value or the
last non-zero valid value stored in this property.

Note - Only use the IFRAME_GAP keyword if
changing the QUALITY keyword value does not
produce the desired results.

MOTION_VEC_LENGTH

Set this keyword to an integer value specifying the
length of the motion vectors to be used to generate
predictive frames. The following table describes the
valid values:

+ 1 — Small motion vectors.
¢ 2 — Medium motion vectors.
¢ 3 — Large motion vectors.

If you do not set this keyword, IDL computes the
MOTION_VEC_LENGTH value based upon the
value you have specified for the QUALITY keyword.
The value of MOTION_VEC_LENGTH returned by
IDLgrMPEG::GetProperty is either the value
computed by IDL from the QUALITY value or the
last non-zero valid value stored in this property.

Note - Only use the MOTION_VEC_LENGTH
keyword if changing the QUALITY value does not
produce the desired results.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 81

Keyword/Argument

Description

QUALITY

Set this keyword to an integer value between O (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality valuesresult in lower rates of time
compression and less motion prediction which
provide higher quality MPEGs but with substantialy
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’t be reproduced even
when setting QUALITY toits' highest setting.

IDLgrPattern::Init

Keyword/Argument Description
PATTERN, These values are now specified in points rather than
SPACING pixels.

IDLgrPlot::GetCTM

Keyword/Argument

Description

n/a

This method now returns doubl e-precision values.

IDLgrPlot::GetProperty

Keyword/Argument Description
ZRANGE The value for this property is now stored as double-
precision.
IDLgrPlot::Init
Keyword/Argument Description
X, Y The values specified with these arguments are now

maintained as double-precision if the input datais of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, they are stored as single-precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

82

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument Description

DATAX, The value for these propertiesis now stored as

DATAY double-precision if the input datais of type DOUBLE
or if the DOUBLE keyword is set. Otherwiseg, itis
stored as single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X or Y arguments or DATAX or DATAY
keywords will be stored in this object as double-
precision floating-point.

MAX_VALUE, The value for these propertiesis now stored as

MIN_VALUE, double-precision.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV,
ZVALUE

IDLgrPolygon::GetCTM

Keyword/Argument

Description

n/a

This method now returns double-precision values.

IDLgrPolygon::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The value for these propertiesis now stored as
ZRANGE double-precision.

IDLgrPolygon::Init

Keyword/Argument

Description

X, Y, Z

The value for these arguments is now stored as
double-precision if theinput datais of type DOUBLE
or if the DOUBLE keyword is set. Otherwise, they are
stored as single-precision.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 83

Keyword/Argument Description
DATA The value for this property is now stored as double-
precisionif theinput dataisof type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.
DOUBLE Set this keyword to indicate that data provided by any

of the X, Y, or Z arguments or DATA keyword will
be stored in this object as double-precision floating-
point.

XCOORD_CONYV,
YCOORD_CONYV,
ZCOORD_CONV

The value for these propertiesis now stored as
double-precision.

IDLgrPolyline::GetCTM

Keyword/Argument

Description

n/a

This method now returns doubl e-precision values.

IDLgrPolyline::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The value for these propertiesis now stored as
ZRANGE double-precision.

IDLgrPolyline::Init

Keyword/Argument Description
X, Y,Z The values specified with these arguments are now
maintained as double-precision if the input datais of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, it is stored as single-precision.
DATA The value for this property is now stored as double-

precisionif theinput datais of type DOUBLE or if the
DOUBLE keyword is set. Otherwise, it is stored as
single-precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

84

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

DOUBLE

Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATA keyword will
be stored in this object as double-precision floating-
point.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these properties is now stored as
double-precision.

IDLgrPrinter::GetTextDimensions

Keyword/Argument Description
DESCENT The values returned in the variable you specify with
this keyword are now double-precision. Note that the
return value for this method is now double-precision.
IDLgrROIl::Init
Keyword/Argument Description
X, Y, Z The values specified with these arguments are now
maintained as double-precision if the input datais of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, they are stored as single-precision.
DOUBLE Set this keyword to indicate that data provided by any

of the X, Y, or Z arguments or DATA keyword
(inherited) will be stored in this object as double-
precision floating-point.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The value for these propertiesis now stored as
double-precision.

IDLgrSurface::GetCTM

Keyword/Argument

Description

n/a

This method now returns double-precision values.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 85

IDLgrSurface::GetProperty

Keyword/Argument Description
XRANGE, YRANGE The values returned in the variabl e specified with
ZRANGE these keywords are now double-precision.

IDLgrSurface::Init

Keyword/Argument

Description

X, Y, Z

The values specified with these arguments are now
maintained as double-precision if the input datais of
type DOUBLE or if the DOUBLE keyword is set.
Otherwise, it is stored as single-precision.

DATAX, DATAY,

The value for these propertiesis now stored as

DATAZ double-precision if the input datais of type DOUBLE
or if the DOUBLE keyword is set. Otherwise, it is
stored as single-precision.

DOUBLE Set this keyword to indicate that data provided by any
of the X, Y, or Z arguments or DATAX, DATAY, or
DATAZ keywords will be stored in this object as
double-precision floating-point.

MAX_VALUE, The value for these propertiesis now stored as

MIN_VALUE, double-precision.

SKIRT,

XCOORD_CONYV,
YCOORD_CONYV,
ZCOORD_CONV

IDLgrSymbol::Init

Keyword/Argument

Description

SIZE

The values for this property are nw stored as double-
precision.

What's New in IDL 5.4

New and Enhanced IDL Objects

86

IDLgrText::GetCTM

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

n/a

This method now returns double-precision data.

IDLgrText::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The values returned in the variable specified with
ZRANGE these keywords are now double-precision.

IDLgrText::Init

Keyword/Argument Description
CHAR_DIMENSIONS, The values for these properties are now stored as
LOCATIONS, double-precision.

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

IDLgrView::Init
Keyword/Argument Description

DOUBLE If set, IDL calculates the transformations used for the
modeling and view transforms using double-precision
floating point arithmetic.

EYE, The values for these properties are now stored as

VIEWPLANE, double-precision.

ZCLIP

IDLgrVolume::GetCTM

Keyword/Argument

Description

n/a

This method now returns double-precision values.

New and Enhanced IDL Objects

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 87

IDLgrVolume::GetProperty

Keyword/Argument Description
XRANGE, YRANGE, The values returned in the variabl e specified with
ZRANGE these keywords are now double-precision.

IDLgrVolume::Init

Keyword/Argument

Description

XCOORD_CONV,
YCOORD_CONV,
ZCOORD_CONV

The values returned in the variabl e specified with
these keywords are now double-precision.

IDLgrVRML::GetTextDimensions

Keyword/Argument

Description

DESCENT

The values returned in the variable you specify with
this keyword are now double-precision.

IDLgrWindow::GetTextDimensions

Keyword/Argument

Description

DESCENT

The values returned in the variable you specify with
this keyword are now double-precision.

IDLgrWindow::Pickdata

Keyword/Argument Description
XLOCATION, The values returned in the variable specified with
YLOCATION, these keywords are now double-precision.
ZLOCATION

What's New in IDL 5.4

New and Enhanced IDL Objects

88 Chapter 1: Overview of New Features in IDL 5.4
New and Enhanced IDL Routines

This section describes the following:
* New IDL Routines
* New and Updated Keywords/Arguments to IDL Routines
» Updated Common Graphics Keywords

New IDL Routines

Thefollowing isalist of new functions, procedures, statements, and executive
commands added to IDL.

Routine Description

ARRAY_EQUAL This function provides afast way to compare
datafor equality in situations where the index
of the elements that differ are not of interest.
For best speed, ensure that the operands are the

same datatype.

BESELK This function returns the K Bessal function of
order N for the argument X.

BREAK This statement immediately exits from aloop

(FOR, WHILE, REPEAT), CASE, or
SWITCH statement.

COLORMAP_APPLICABLE This function determines whether the current
visual class supports the use of acolor map,
and if so, whether color map changes affect
pre-displayed Direct Graphicsor if the
graphics must be redrawn to pick up color map
changes. Note that this routine wasincluded in
previous releases of IDL but was
undocumented.

CONTINUE This statement immediately starts the next
iteration of the enclosing FOR, WHILE, or
REPEAT loop.

New and Enhanced IDL Routines What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 89
Routine Description
FILE_ CHMOD This procedure allows the user to change the
current access permissions (modes) associated
with afile or directory.
FILE DELETE This procedure deletes afile or empty

directory, if the process has the necessary
permissions to remove the file as defined by
the current operating system. FILE_CHMOD
can be used to change file protection settings.

FILE_EXPAND_PATH

This function expands a given file or partial
directory nameto its fully qualified name.

FILE_MKDIR

This procedure creates a new directory, or
directories, with the default access permissions
for the current process. If a specified directory
has non-existent parent directories,

FILE_ MKDIR automatically creates all the
intermediate directories as well.

FILE_TEST

This function checks files for existence and
other attributes without first having to open the
file

FILE_ WHICH

This function separates a specified file path
into its component directories, and searches
each directory in turn for a specific file. This
command is modeled after the UNIX

whi ch(1) command.

HOUGH

Thisfunction returns the Hough transform of a
two-dimensional image.

LAGUERRE

This function returns the value of the
associated Laguerre polynomial.

LEGENDRE

This function returns the value of the
associated L egendre polynomial.

MAKE_DLL

This procedure builds a sharable library from
C language code which is suitable for use by
the dynamic linking featuresin IDL
(CALL_EXTERNAL, LINKIMAGE, and the
dynamically linkable modules (DLMSs)).

What's New in IDL 5.4

New and Enhanced IDL Routines

90 Chapter 1: Overview of New Features in IDL 5.4
Routine Description
MAP_2POINTS This function returns parameters such as

distance, azimuth, and path relating to the
great circle or rhumb line connecting two
points on a sphere.

MATRIX_MULTIPLY

This function calculates the IDL matrix-
multiply operator (#) of two (possibly
transposed) arrays. Thisis more efficient than
#in some situations.

MEMORY

This function returns information on the
amount of dynamic memory currently in use
by the IDL session.

RADON

Thisfunction returns the Radon transform of a
two-dimensional image.

SAVGOL

This function returns the coefficients of a
Savitzky-Golay smoothing filter.

SOCKET

This procedure, supported on UNIX or
Microsoft Windows platforms, opens a client
side TCP/IP Internet socket asan IDL file unit.
Such files can be used in the standard manner
with any Input/Output routinesin IDL.

SPHER_HARM

Thisfunction returns the value of the spherical
harmonic function.

SWITCH

This statement selects one statement for
execution from multiple choices, depending
upon the value of an expression. This
statement is similar to the CASE statement.
Whereas CASE executes at most one
statement within the CASE block, SWITCH
executes the first matching statement and any
following statements in the SWITCH block.

TIMEGEN

This function returns an array (with the
specified dimensions) of double-precision
floating-point values that represent Julian
date/times.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 91

Routine Description

READ_PNG This procedure has been added to ease the
conversion for the removal of the READ_GIF
procedure from IDL. This new procedure has
the same functionality asthe READ_PNG
function. When converting from the
READ_GIF procedure to the READ_PNG
procedure, note that READ_PNG accepts the
same arguments as READ_GIF but does not
accept the CLOSE and MULTIPLE keywords.

New and Updated Keywords/Arguments to IDL Routines

Thefollowing isalist of new and updated keywords and arguments to existing DL

routines.
ASSOC
Keyword/Argument Description
n/a You can now use ASSOC to read datafrom
compressed files.
AXIS
Keyword/Argument Description
X, VY, Z AXIS now acceptsthe X, Y, and/or Z arguments as

double-precision floating point values without
converting them to single-precision.

BESELI, BESELJ, BESELK, BESELY

Keyword/Argument Description

N This argument can now be either an integer or areal
number.

What's New in IDL 5.4 New and Enhanced IDL Routines

92

Chapter 1: Overview of New Features in IDL 5.4

BINOMIAL
Keyword/Argument Description
P This argument can now be either ascalar or an array.
DOUBLE Set this keyword to force the computation to be done
in double-precision arithmetic.
GAUSSIAN Set this keyword to use the Gaussian approximation,
by using the normalized variable
Z=(V—NP)/SQRT(NP(1 - P)).
BLK_CON
Keyword/Argument Description
DOUBLE Set this keyword to force the computation to be done

in double precision.

CALL_EXTERNAL

Keyword/Argument

Description

AUTO_GLUE

Set this keyword to enable the
CALL_EXTERNAL Auto Glue feature. Use of
AUTO_GLUE impliesthe PORTABLE

keyword.

CC

If present, atemplate string to be used in
generating the C compiler command(s) to
compile the automatically generated glue
function. For a more complete description of this
keyword, see MAKE_DLL.

COMPILE_DIRECTORY

Specifies the directory to use for creating the
necessary intermediate files and the final glue
function sharable library. For a more complete
description of this keyword, see MAKE _DLL.

EXTRA_CFLAGS

If present, a string supplying extra optionsto the
command used to execute the C compiler. For a
more compl ete description of this keyword, see
MAKE DLL.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 93

Keyword/Argument Description

EXTRA_LFLAGS If present, a string supplying extraoptions to the
command used to execute the linker. For amore
complete description of this keyword, see
MAKE_DLL.

IGNORE_EXISTING_GLUE | Normally, if Auto Glue finds a pre-existing glue
function, it will useit without attempting to build
it again. Set IGNORE_EXISTING_GLUE to
override this caching behavior and force
CALL_EXTERNAL to rebuild the glue function
sharable library.

LD If present, atemplate string to be used in
generating the linker command to build the glue
function sharable library. For amore complete
description of this keyword, see MAKE_DLL.

NOCLEANUP If set, CALL_EXTERNAL will not remove
intermediate files generated in order to build the
gluefunction sharablelibrary after thelibrary has
been built. This keyword can be used to preserve
information for debugging in case of error, or for
additional information on how Auto Glue works.
For a more complete description of this keyword,
see MAKE _DLL.

SHOW_ALL_OUTPUT Auto Glue normally produces no output unless an
error prevents successful building of the glue
function sharable library. Set
SHOW_ALL_OUTPUT to see all output
produced by the process of building the library.
For a more complete description of this keyword,
see MAKE _DLL.

VERBOSE If set, VERBOSE causes CALL_EXTERNAL to
issue informational messages asit carries out the
task of locating, building, and executing the glue
function. For a more compl ete description of this
keyword, see MAKE _DLL.

What's New in IDL 5.4 New and Enhanced IDL Routines

94 Chapter 1: Overview of New Features in IDL 5.4
CEIL
Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit

integer regardless of the input type.
CLOSE
Keyword/Argument Description

EXIT_STATUS Set this keyword to anamed variable that will contain
the exit status reported by a UNIX child process
started viathe UNIT keyword to SPAWN.

FORCE Set this keyword to force the file to be closed
regardless of any errors that occur in the process.

CONTOUR
Keyword/Argument Description

X, Y, Z The X, Y and/or Z arguments are now accepted as
double-precision floating point vectors/arrays without
converting them to single-precision.

CLOSED Set CLOSED=0 along with PATH_INFO and/or
PATH_XY to return path information for contours
that are not closed.

LEVELS Now accepts a vector of double-precision floating
point values without converting them to single-
precision.

NLEVELS Should be a positive integer.

PATH_DOUBLE The new PATH_DOUBLE keyword has been added

to allow achoice asto whether PATH_* information
should be returned in single-precision or double-
precision.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 95

Keyword/Argument Description

PATH_FILENAME For this keyword, a secondary structure
(CONTOUR_DBL_HEADER) isintroduced for the
case that the new PATH_DOUBLE keyword is set.
This structure is the same as the
CONTOUR_HEADER structure except that the
VALUE field is a double-precision (rather than
single-precision) floating point value.

PATH_INFO For this keyword, a secondary structure
(CONTOUR_DBL_PATH_STRUCTURE) is
introduced for the case that the new PATH_DOUBLE
keyword is set. This structure is the same as the
CONTOUR_PATH_STRUCTURE except that the
VALUE field is a double-precision (rather than a
single-precision) floating point value.

To return path information for contours that are not
closed, set CLOSED=0.

PATH_XY This keyword will now return an array of double-

precision (rather than single-precision) coordinate
values in the case that the new /PATH_DOUBLE

keyword is set.

To return path information for contours that are not
closed, set CLOSED=0.

CONVERT_COORD

Keyword/Argument Description

X, Y, Z Acceptsthe X, Y and/or Z arguments as double-
precision floating point vectors without converting
them to single-precision.

DOUBLE Set this keyword to specify the results should be
returned in double-precision.

What's New in IDL 5.4 New and Enhanced IDL Routines

96

COORD2TO3

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

This routine now returns a three-element vector of
double-precision (rather than single-precision) values.

CREATE_VIEW

Keyword/Argument

Description

AX, AY, AZ, PERSP,
XMAX, XMIN, YMAX,
YMIN, ZFAC, ZMAX,
ZMIN, ZOOM

These keywords now accept double-precision values
and will no longer be converted to single-precision
values.

CURSOR

Keyword/Argument

Description

NORMAL, DATA

If set, the X and Y argumentswill contain double-
precision values (rather than single-precision values).

CURVEFIT
Keyword/Argument Description
DOUBLE Set this keyword to force the computation to be
performed in double-precision arithmetic.
CV_COORD
Keyword/Argument Description
DOUBLE Set this keyword to force the computation to be done

in double-precision arithmetic.

CW_CLR_INDEX

Keyword/Argument

Description

VALUE

Set this keyword to the index of the color that is to be
initially selected. The default isthe START_COLOR.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 97

CW_FILESEL
Keyword/Argument Description
WARN_EXIST Set this keyword to produce a question dialog if the
user selects afile that already exists. This keyword is
useful when creating a“write” dialog. The default is
to alow any filename to be quietly accepted, whether
it exists or not.
DEVICE
Keyword/Argument Description

PRE_DEPTH (PS)

Set this keyword to a value indicating the bit depth to
be used for the preview in the PostScript file. Valid
values are 1 (for black and white preview) and 8 (for
8-hit grayscale preview). This keyword appliesonly if
the PREVIEW keyword is nonzero. The default depth
is8.

PRE_XSIZE (PS)

Set this keyword to the width to be used for the
preview in the PostScript file. PRE_XSIZE is
specified in centimeters, unless the INCHES keyword
is set. This keyword applies only if the PREVIEW
keyword value is nonzero. The default is 1.77778
inches (128 pixels at 72dpi).

PRE_YSIZE (PS)

Set this keyword to the height to be used for the
preview in the PostScript file. PRE_Y SIZE is
specified in centimeters, unless the INCHES keyword
is set. This keyword applies only if the PREVIEW
keyword value is nonzero. The default is 1.77778
inches (128 pixels at 72dpi).

What's New in IDL 5.4

New and Enhanced IDL Routines

98

DIALOG_PICKFILE

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

FILTER

Set this keyword to a string value or an array of
strings specifying the file types to be displayed in the
filelist. This keyword is used to reduce the number of
filesto choose from. Note that in UNIX, passing an
array using the FILTER keyword will result in the
inclusion of al filesin the current directory.

DIALOG_READ_IMAGE

Keyword/Argument

Description

GET_PATH

Set this keyword to a named variable in which the
path of the selection is returned.

DIALOG_WRITE_IMAGE

Keyword/Argument Description
WARN_EXIST Set this keyword to produce a question dialog if the
user selects afile that already exists. The default isto
quietly overwrite thefile.
DOUBLE
Keyword/Argument Description
Expression This argument is the expression to be converted to
double-precision, floating-point.
Offset This argument is the offset from beginning of the

Expression data area.

o

When extracting fields of data, the D; arguments
specify the dimensions of the result. The dimension
parameters can be any scalar expression. Up to eight
dimensions can be specified. If no dimension
arguments are given, the result is taken to be scalar.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 99

DRAW_ROI
Keyword/Argument Description
oROI Since the IDLanROI object how supports single or
double-precision vertices, this routine now supports
single or double-precision.
FACTORIAL
Keyword/Argument Description
N This argument can now be either a scalar or an array.
uL64 Set this keyword to return the results as unsigned 64-
bit integers.
FLOOR
Keyword/Argument Description
L64 Set this keyword so that the result type is 64-hit
integer regardless of the input type.
FREE_LUN
Keyword/Argument Description
EXIT_STATUS Set this keyword to a named variable that will contain
the exit status reported by a UNIX child process
started viathe UNIT keyword to SPAWN.
FORCE Set this keyword to force the file to be closed

regardless of any errors that occur in the process.

What's New in IDL 5.4

New and Enhanced IDL Routines

100

Chapter 1: Overview of New Features in IDL 5.4

FSTAT
Keyword/Argument Description
n/a The following new fields are returned in the FSTAT
structure:
* ATIME — Date of last access
e CTIME — Creation date
« MTIME — Date of last modification
All are reported in seconds since 1 January 1970
UTC.
GETENV
Keyword/Argument Description

ENVIRONMENT

Set this keyword to return a string array containing all
environment variables set in the current process, one
variable per entry, in the format (Variable = value).
This keyword isfor UNIX only.

HANNING
Keyword/Argument Description
DOUBLE Set this keyword to force the computation to be done
in double precision.
HISTOGRAM
Keyword/Argument Description
BINSIZE When the new NBINS keyword is specified and
BINSIZE is not specified, the default is BINSIZE =
(MAX —MIN) / (NBINS-1).
L64 By default, the return value of HISTOGRAM is 32-hit

integer when possible, and 64-bit integer if the
number of elements being processed requiresit. Set
L 64 to force 64-hit integersto bereturned in all cases.
L 64 controls the type of Result as well as the output
from the REVERSE_INDICES keyword.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 101

Keyword/Argument Description
MAX If the new NBINS keyword is specified, the value for
MAX will be adjusted to NBINS*BINSIZE + MIN.
Thisensuresthat the last bin has the same width asthe
other bins.
NBINS Set this keyword to the number of binsto use.

REVERSE_INDICES

Set this keyword to a named variable in which the list
of reverseindicesis returned.

IBETA, IGAMMA

Keyword/Argument Description
DOUBLE Set this keyword to force the computation to be done
in double precision.
EPS Set this keyword to the relative accuracy, or tolerance.
ITER Set this keyword to a named variable that will contain
the actual number of iterations performed.
ITMAX Set this keyword to specify the maximum number of
iterations. The default valueis 100.
ISOCONTOUR
Keyword/Argument Description
Outverts Vertices are now returned in double-precision floating
point if the new DOUBLE keyword is set.
C VALUE Now accepts a vector of double-precision floating
point values, independent of the setting of the new
DOUBLE keyword.
DOUBLE This new keyword allows you to specify that

computations are to be carried out in double-precision
and to return resulting vertices as double-precision
values.

LEVEL_VALUES

Now returns a vector of double-precision floating
point values, independent of the setting of the new
DOUBLE keyword.

What's New in IDL 5.4

New and Enhanced IDL Routines

102

Chapter 1: Overview of New Features in IDL 5.4

JULDAY
Keyword/Argument Description
Month, Day, Year, Hour, | These arguments now accept array values.
Minute, Second
LABEL_DATE
Keyword/Argument Description
AM_PM, Set this keyword to a string of 2 names to be used for

the names of the AM and PM strings.

DATE_FORMATS

This keyword now accepts format strings that include
codes for sub-seconds. DATE_FORMATS can how
also accept a string array for use with amulti-level
axis.

DAYS OF WEEK

Set this keyword to a string array of 7 namesto be
used for the days of the week.

OFFSET

Set this keyword to a value representing the offset to
be added to each tick value before conversion to a
label. This keyword is usually used when the tick
values are measured relative to a certain starting time.

ROUND_UP

Set this keyword to force times to be rounded up to
the smallest time unit that is present in the
DATE_FORMAT string.

LEEFILT

Keyword/Argument

Description

DOUBLE

Set this keyword to force the computation to be
performed in double precision.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 103

LINFIT

Keyword/Argument

Description

COVAR

Set this keyword to a named variable that will contain
the Covariance matrix of the coefficients.

MEASURE_ERRORS

Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same lengthas X and Y.

Note - This keyword has replaced the SDEV
keyword. MEASURE_ERRORS has the same
definition and meaning as SDEV. For backwards
compatibility, the SDEV keyword is still accepted,
but new code should use the MEASURE_ERRORS
keyword.

YFIT

Set this keyword equal to a named variable that will
contain the vector of calculated Y values.

LIVE_CONTOUR

Keyword/Argument Description
DOUBLE Set this keyword to force LIVE_CONTOUR to use
double-precision to draw the result. This hasthe same
effect as specifying datain the Zn argument using
IDL variables of type DOUBLE.
LIVE_PLOT
Keyword/Argument Description
DOUBLE Set this keyword to force LIVE_PLOT to use double-

precision to draw the result. This has the same effect
as specifying datain the Y Vector argument using IDL
variables of type DOUBLE.

What's New in IDL 5.4

New and Enhanced IDL Routines

104

LIVE_SURFACE

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument Description
DOUBLE Set this keyword to force LIVE_SURFACE to used
double-precision to draw the result. This has the same
effect as specifying datain the Data argument using
IDL variables of type DOUBLE.
LMFIT
Keyword/Argument Description

MEASURE_ERRORS

Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the WEIGHTS
keyword. Code that uses the WEIGHTS keyword will
continue to work as before, but new code should use
the MEASURE_ERRORS keyword. Note that the
definition of the MEASURE_ERRORS keyword is
not the same as the WEIGHTS keyword. Using the
WEIGHTS keyword, SQRT(J/WEIGHTY[i])
represents the measurement error for each point Y[i].
Using the MEASURE_ERRORS keyword, the
measurement error for each point is represented as
simply MEASURE_ERRORSY]i]. For an example, see
“LMFIT” on page 24.

SIGMA

The definition of the SIGMA keyword has changed. If
you do not specify error estimates (viathe
MEASURE_ERRORS keyword), then you are
assuming that your user-supplied model (or the
default quadratic), is the correct model for your data,
and therefore, no independent goodness-of-fit test is
possible. In this case, the values returned in SIGMA
are multiplied by the correction factor
SQRT(CHISQ/(N-M)), where N is the number of
pointsin X, and M is the number of coefficients. In
versions of IDL prior to 5.4, this correction factor was
not being applied. For an example, see“LMFIT” on

page 24.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 105

MIN_CURVE_SURF

Keyword/Argument Description
CONST Set this keyword to fit data on the sphere with a
constant baseline, otherwise, data on the sphereisfit
with a basdline that contains a constant term plus
linear X, Y, and Z terms.
SPHERE Set this keyword to perform interpolation on the
surface of a sphere.
MPEG_OPEN
Keyword/Argument Description
BITRATE Set this keyword to a double-precision value to

specify the MPEG moviebit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid val ues:

* MPEG 1— 0.1 to 104857200.0
* MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
BITRATE value based upon the value you have
specified for the QUALITY keyword.

Note - Only use the BITRATE keyword if changing
the QUALITY keyword value does not produce the
desired results. It is highly recommended to set the
BITRATE to at least several times the frame rate to
avoid unusable MPEG files or file generation errors.

What's New in IDL 5.4

New and Enhanced IDL Routines

106 Chapter 1: Overview of New Features in IDL 5.4
Keyword/Argument Description
IFRAME_GAP Set this keyword to a positive integer value that

specifies the number of frames between | framesto be
created in the MPEG file. | frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
IFRAME_GAP value based upon the value you have
specified for the QUALITY keyword.

Note - Only use the IFRAME_GAP keyword if
changing the QUALITY keyword value does not
produce the desired results.

MOTION_VEC _LENGTH

Set this keyword to an integer value specifying the
length of the motion vectors to be used to generate
predictive frames. Valid values include:

* 1 — Small motion vectors.

e 2— Medium motion vectors.

e 3 — Large motion vectors.

If you do not set this keyword, IDL computes the
MOTION_VEC _LENGTH value based upon the
value you have specified for the QUALITY keyword.

Note - Only usethe MOTION_VEC LENGTH
keyword if changing the QUALITY value does not
produce the desired results.

QUALITY

Set this keyword to an integer value between 0 (low
guality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality values result in lower rates of time
compression and less motion prediction which
provide higher quality MPEGs but with substantially
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’t be reproduced even
when setting QUALITY to its highest setting.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 107

ONLINE_HELP
Keyword/Argument Description

TOPICS If set, the Topics dialog of the help system will be
displayed for the specified helpfile.

HTML_HELP If set, the Windows HTML Help systemisused. All
other keywordsto ONLINE_HELP behave as
specified, but the HTML help system is utilized. Note
that a default file extension of . chmisused, not . hl p.

OPEN
Keyword/Argument Description

RAWIO The pre-existing keyword NOSTDIO has been
renamed RAWIO to reflect the fact that stdio may or
may not actually be used. IDL will continue to accept
NOSTDIO as asynonym for RAWIO.

STDIO Set this keyword to force the file to be opened via the
standard C I/O library (stdio) rather than any other
native OS API that might usually be used. Thisis not
generally necessary and is intended for use with
dynamically linked 3rd party code where the detail s of
how 1/O is performed is relevant.

OPLOT
Keyword/Argument Description

X, Y OPLOT now acceptsthe X and/or Y arguments as
double-precision floating point vectors without
converting them to single-precision.

PLOT
Keyword/Argument Description
X, Y PLOT now accepts X and/or Y arguments as double-

precision floating point vectors without converting
them to single-precision.

What's New in IDL 5.4

New and Enhanced IDL Routines

108 Chapter 1: Overview of New Features in IDL 5.4

PLOTS
Keyword/Argument Description
X, Y, Z PLOTS now acceptsthe X, Y, and/or Z arguments as
double-precision floating point vectors without
converting them to single-precision.
POLY_FIT
Keyword/Argument Description
CHISQ Set this keyword to a named variable that will contain
the value of the chi-square goodness-of-fit.
COVAR This keyword has replaced the Corrm argument. For
backwards compatibility, the argument will still be
accepted.

MEASURE_ERRORS Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the POLY FITW
function. Note, however, that the definition of the
MEASURE_ERRORS keyword to POLY _FIT is
different from the definition of the Weights argument
to POLYFITW. In POLY FITW, SQRT(1/Weightgi])
represented the measurement error for each point Y[i].
Now, for consistency with other curve-fitting
routines, POLY _FIT defines the measurement error
for each point as MEASURE_ERRORSY]i]. Code
using POLY FITW will continue to work as before,
but new code should use POLY _FIT. If you wish to
convert existing code using POLY FITW to use the
new MEASURE_ERRORS keyword to POLY _FIT,
you must change the values you supply. For an
example, see“POLY_FIT” on page 26.

SIGMA Set this keyword to a named variable that will contain
the 1-sigma uncertainty estimates for the returned
parameters.

New and Enhanced IDL Routines What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument Description

YERROR This keyword has replaced the Sgma argument. For
backwards compatibility, the argument will still be
accepted.

YFIT This keyword has replaced the Yfit argument. For
backwards compatibility, the argument will still be
accepted.

STATUS Set this keyword to a named variable to receive the
status of the operation. Possible status values are;

» 0= Successful completion.

» 1= Singular array (which indicates that the
inversion isinvalid). Result is NaN.

» 2 =Warning that a small pivot element was used
and that significant accuracy was probably lost.

» 3 =Undefined (NaN) error estimate was
encountered.

POLYFILL
Keyword/Argument Description
X, Y, Z Now accepts X, Y, and/or Z as double-precision
values without converting them to single-precision.
POLYSHADE
Keyword/Argument Description
X, Y,Z Now accepts X, Y, and/or Z as double-precision

values without converting them to single-precision.

What's New in IDL 5.4

New and Enhanced IDL Routines

109

110

RANDOMN, RANDOMU

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument Description

DOUBLE Set this keyword to force the computation to be done
using double-precision arithmetic.

LONG Set this keyword to return integer uniform random
deviatesin therange [1...2%1 - 2]. If LONG is set, all
other keywords are ignored.

READ_JPEG
Keyword/Argument Description

UNIT When opening afileintended for use with the UNIT
keyword, if the filename doesnot end in . j pg, or
. j peg, you must specify the STDIO keyword to
OPEN in order for the file to be compatible with
READ_JPEG.

READ_PNG
Keyword/Argument Description

ORDER Set thiskeyword to indicate that the rows of theimage
should be drawn from the bottom to top. By default
the rows are drawn from top to bottom.

READ_TIFF
Keyword/Argument Description
CHANNELS Set this keyword to a scalar or vector giving the

channel numbers to be returned for a multi-channel
image, starting with zero. The default isto return al
of the channdls.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 111

Keyword/Argument

Description

INTERLEAVE

For multi-channel images, set this keyword to one of
the following values to force the Result to have a
specific interleaving, regardless of the type of
interleaving in the file being read:

* 0=Pixd interleaved: Result will have dimensions
[Channels, Columns, Rows].

e 1= Scanline (row) interleaved: Result will have
dimensions [Columns, Channels, Rows).

» 2= Planar interleaved: Result will have
dimensions [Columns, Rows, Channelg).

If this keyword is hot specified, the Result will always
be pixel interleaved, regardless of the type of
interleaving in the file being read. For files stored in
planar-interleave format, this keyword isignored if
the R, G, and B arguments are specified.

READU

Keyword/Argument

Description

TRANSFER_COUNT

This keyword is now accepted on all platforms.

REGRESS
Keyword/Argument Description

CHISQ Set this keyword equal to a named variable that will
contain the value of the chi-square goodness-of -fit.
Note - This keyword replaces the Chisg argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

CONST Set this keyword to a named variable that will contain

the constant term of the fit.

Note - This keyword replaces the Const argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

What's New in IDL 5.4

New and Enhanced IDL Routines

112

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

CORRELATION

Set this keyword to a named variable that will contain
the vector of linear correlation coefficients.

Note - This keyword replaces the R argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

DOUBLE Set this keyword to force computations to be done in
double-precision arithmetic.
FTEST Set this keyword to a named variable that will contain

the F-value for the goodness-of-fit test.

Note - This keyword replaces the Ftest argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

MCORRELATION

Set this keyword to a named variable that will contain
the multiple linear correlation coefficient.

Note - Thiskeyword replacesthe Rmul argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

SIGMA

Set this keyword to a named variable that will contain
the 1-sigma uncertainty estimates for the returned
parameters.

Note - This keyword replaces the Sgma argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

STATUS

Set this keyword to a named variable that will contain
the status of the operation. Possible status values are:

» 0= successful completion

e 1=singular array (which indicates that the
inversion isinvalid)

e 2 =warning that asmall pivot element was used
and that significant accuracy was probably lost.

Note - This keyword replaces the Satus argument.
The argument is still accepted for backward
compatibility, but the keyword should be used in all
new code.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 113

Keyword/Argument

Description

MEASURE_ERRORS

Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - This keyword has replaced the Weights
argument. The definition of MEASURE_ERRORS is
different from the Weights argument that it has
replaced. Using the Weights argument,

SQRT (1/Weightd[i]) represents the measurement error
for each point Y[i]. Now, for consistency with other
curve-fitting routines, the measurement error for each
point is represented as simply
MEASURE_ERRORSY]i]. Also, the
RELATIVE WEIGHT keyword is no longer
necessary. Now, if the MEASURE_ERRORS
keyword is not provided, then REGRESS assumes
you want no weighting. For an example of how to use
the new MEASURE_ERRORS keyword, see
“REGRESS’ on page 27.

YFIT

Set this keyword to a named variable that will contain
the vector of calculated Y values.

Note - This keyword replaces the Yfit argument. The
argument is still accepted for backward compatibility,
but the keyword should be used in all new code.

RESOLVE_ROUTINE

Keyword/Argument

Description

COMPILE_FULL_FILE

Set COMPILE_FULL_FILE to compilethe entirefile
regardless of encountering the specified routinein
Name.

REVERSE
Keyword/Argument Description
OVERWRITE Set this keyword to conserve memory by doing the

transformation “in-place” THE result overwrites the
previous contents of the array.

What's New in IDL 5.4

New and Enhanced IDL Routines

114

Chapter 1: Overview of New Features in IDL 5.4

ROUND
Keyword/Argument Description

L64 Set this keyword so that the result type is 64-bit

integer regardless of the input type.
SET_PLOT
Keyword/Argument Description

Device This argument now acceptsthe “METAFILE” device.
For more information, see “Windows M etafile Format
(WMF) Support for Direct Graphics’ on page 14.

SHADE_ SURF
Keyword/Argument Description

X, Y, Z These arguments now accept double-precision values

without converting them to single-precision.
SIZE
Keyword/Argument Description

DIMENSIONS Set this keyword to return the dimensions of
Expression. Theresult is a 32-bit integer when
possible, and 64-bit integer if the number of elements
in Expression requiresit. Set L64 to force 64-bit
integersto bereturned in al cases.

L64 Set this keyword to force 64-bit integers to be
returned in al cases. In addition to affecting the
default result, L64 also affects the output from the
DIMENSIONS, N_ELEMENTS, and STRUCTURE
keywords.

N_ELEMENTS Set this keyword to return the number of data

elements in Expression. Setting this keyword is
equivalent to using the N_ELEMENTS function. The
result is a 32-bit integer when possible, and 64-bit
integer if the number of elements requiresit.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 115

Keyword/Argument Description

STRUCTURE Set this keyword to return all available information
about Expression in astructure. The result is an
IDL_SIZE (32-bit) structure when possible, and an
IDL_SIZE64 structure otherwise.

SORT
Keyword/Argument Description

L64 Set this keyword so that the result type is 64-hit

integer regardless of the input type.
SPAWN
Keyword/Argument Description

ErrResult A named variable in which to place the error output
(stderr) from the child process. (UNIX and Windows
only.)

EXIT_STATUS Set this keyword to Return the exit status for the child
process. The meaning of thisvalueis operating
system dependent

FORCE Set this keyword to force thefile to be closed
regardlessif errors occur in the process.

HIDE Set this keyword so that the command interpreter shell
window is minimized to prevent the user from seeing
it. (Windows only)

LOG_OUTPUT Set this keyword so that the command interpreter
window isminimized (aswith HIDE) and all output is
diverted to the IDLDE log window. (Windows only)

NOSHELL This keyword is now supported on Windows
platforms.

NOWAIT Set this keyword so that the IDL process continues

executing in parallel with the subprocess. (Windows,
Macintosh, and VMS only)

What's New in IDL 5.4

New and Enhanced IDL Routines

116 Chapter 1: Overview of New Features in IDL 5.4
Keyword/Argument Description

NULL_STDIN Set this keyword so that the null device/ dev/ nul |
(UNIX) or NUL (Windows) is connected to the
standard input of the child process. (UNIX and
Windows only)

STDERR Set this keyword so that the child’s error output
(stderr) is combined with the standard output and
returned in Result. STDERR and the ErrResult
argument are mutually exclusive. (UNIX and
Windows only)

SURFACE
Keyword/Argument Description

X, Y, Z Now accepts double-precision values without
converting them to single-precision.

SKIRT Now accepts double-precision values without
converting them to single-precision.

SVvDC
Keyword/Argument Description
ITMAX Set this keyword to specify the maximum number of

iterations. The default valueis 30.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 117

SVDFIT

Keyword/Argument

Description

MEASURE_ERRORS

Set this keyword to a vector containing standard
measurement errors for each point Y[i]. This vector
must be the same length as X and Y.

Note - The WEIGHTS keyword is obsolete and has
been replaced by the MEASURE _ERRORS keyword.
Code that uses the WEIGHTS keyword will continue
to work as before, but new code should use the
MEASURE_ERRORS keyword. Note that the
definition of the MEASURE_ERRORS keyword is
not the same as the WEIGHTS keyword. Using the
WEIGHTS keyword, YWEIGHTY[i] represents the
measurement error for each point Y[i]. Using the
MEASURE_ERRORS keyword, the measurement
error is represented as smply
MEASURE_ERRORSY]i]. For an example, see
“SVDFIT” on page 29.

SIGMA

The definition of the SIGMA keyword has changed. If
you do not specify error estimates (viathe
MEASURE_ERRORS keyword), then you are
assuming that the polynomial (or your user-supplied
model) is the correct model for your data, and
therefore, no independent goodness-of -fit test is
possible. In this case, the values returned in SIGMA
are multiplied by the correction factor
SOQRT(CHISQ/(N-M)), where N is the number of
pointsin X, and M is the number of coefficients. In
versions of IDL prior to 5.4, this correction factor was
not being applied. For an example, see“SVDFIT” on

page 29.

What's New in IDL 5.4

New and Enhanced IDL Routines

118 Chapter 1: Overview of New Features in IDL 5.4
SYSTIME
Keyword/Argument Description
ElapsedSeconds If the SecondsFlag argument (previously called Arg)
is zero, the ElapsedSeconds argument may be set to
the number of seconds past 1 January 1970 UTC. In
this case, SY STIME returns the corresponding
date/time string (rather than the string for the current
time). The returned date/time string is adjusted for the
local time zone, unlessthe UTC keyword is set.
uTC Set this keyword to specify that the value returned by
SYSTIME isto be returned in Universal Time
Coordinated (UTC) rather than being adjusted for the
current time zone. UTC time is defined as Greenwich
Mean Time updated with leap seconds. UTC can be
used with the JULIAN keyword.
T3D
Keyword/Argument Description
OBLIQUE These keywords now accept double-precision values
PERSPECTIVE (without conversion to single-precision).
ROTATE
SCALE
TRANSLATE
TRIGRID
Keyword/Argument Description
XOUT, YOUT Set these keywords to a vector specifying the output

grid X and Y values. If these keywords are supplied,
the GS and Limits arguments are ignored. Use these
keywords to specify irregularly spaced rectangular
output grids.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 119

TV
Keyword/Argument Description
X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.
TVCRS
Keyword/Argument Description
X, Y Now accepts X and Y as double-precision values
without converting them to single-precision.
TVSCL
Keyword/Argument Description
X, Y Now accepts X and Y as double-precision values

without converting them to single-precision.

VALUE_LOCATE

Keyword/Argument Description

L64 Set this keyword so that the result type is 64-hit
integer regardless of the input type.

VERT_T3D
Keyword/Argument Description
DOUBLE Set this keyword so that the results are returned in
double-precision.

What's New in IDL 5.4 New and Enhanced IDL Routines

120

WHERE

Chapter 1: Overview of New Features in IDL 5.4

Keyword/Argument

Description

COMPLEMENT

Set this keyword to anamed variable that receives the
subscripts of the zero elements of Array_Expression.
These are the subscripts that are not returned in
Result. Together, Result and COMPLEMENT specify
every subscript in Array_Expression. If there are no
zero elementsin Array_Expression, COMPLEMENT
returns a scalar integer with the value -1.

NCOMPLEMENT

Set this keyword to anamed variable that receives the
number of zero elements found in Array_Expression.
This value isthe number of subscripts that will be
returned viathe COMPLEMENT keyword if itis
specified.

L64

Set this keyword so that the result type is 64-bit
integer regardless of the input type.

WRITE_JPEG

Keyword/Argument

Description

UNIT

When opening afile intended for use with the UNIT
keyword, if the filename doesnot endin . j pg, or

. j peg, you must specify the STDIO keyword to
OPEN in order for thefile to be compatible with
WRITE_JPEG.

WRITE_PNG

Keyword/Argument

Description

ORDER

Set thiskeyword to indicate that the rows of theimage
should be written from the bottom to top. By default,
the rows are written from top to bottom.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 121

WRITEU

Keyword/Argument

Description

TRANSFER_COUNT

Now accepted on all platforms.

XINTERANIMATE

Keyword/Argument

Description

MPEG_BITRATE

Set this keyword to a double-precision value to
specify the MPEG moviebit rate. Higher bit rates will
create higher quality MPEGs but will increase file
size. The following table describes the valid values:

* MPEG 1— 0.1 to 104857200.0
* MPEG 2 — 0.1 to 429496729200.0

If you do not set this keyword, IDL computes the
MPEG_BITRATE value based upon the value you
have specified for the MPEG_QUALITY keyword.

Note - Only usethe MPEG_BITRATE keyword if
changing the MPEG_QUALITY keyword value does
not produce the desired results. It is highly
recommended to set the MPEG_BITRATE to at least
several times the frame rate to avoid unusable MPEG
files or file generation errors.

MPEG_IFRAME_GAP

Set this keyword to a positive integer value that
specifies the number of frames between | framesto be
created in the MPEG file. | frames are full-quality
image frames that may have a number of predicted or
interpolated frames between them.

If you do not specify this keyword, IDL computes the
MPEG_IFRAME_GAP value based upon the value
you have specified for the MPEG_QUALITY
keyword.

Note - Only use the MPEG_IFRAME_GAP keyword
if changing the MPEG_QUALITY keyword value
does not produce the desired results.

What's New in IDL 5.4

New and Enhanced IDL Routines

122 Chapter 1: Overview of New Features in IDL 5.4
Keyword/Argument Description
MPEG_MOTION_VEC | Set thiskeyword to an integer value specifying the
LENGTH length of the motion vectors to be used to generate

predictive frames. Valid values include:
e 1— Small motion vectors.
» 2— Medium mation vectors.
» 3— Large motion vectors.

If you do not set this keyword, IDL computes the
MPEG_MOTION_VEC_LENGTH value based upon
the value you have specified for the
MPEG_QUALITY keyword.

Note - Only usethe
MPEG_MOTION_VEC_LENGTH keyword if
changing the MPEG_QUALITY value does not
produce the desired results.

MPEG_QUALITY

Set this keyword to an integer value between O (low
quality) and 100 (high quality) inclusive to specify the
quality at which the MPEG stream is to be stored.
Higher quality valuesresult in lower rates of time
compression and less mation prediction which
provide higher quality MPEGs but with substantially
larger file size. Lower quality factors may result in
longer MPEG generation times. The default is 50.

Note - Since MPEG uses JPEG (lossy) compression,
the original picture quality can’'t be reproduced even
when setting QUALITY to its highest setting.

XYOUTS

Keyword/Argument

Description

X, Y

Now accepts X and Y as double-precision values
without converting them to single-precision.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 123

Updated Common Graphics Keywords

Thefollowing isalist of updated common graphics keywords to existing IDL

routines.
CLIP

Affected Routines

Description

CONTOUR, This keyword now accepts a vector of double-
DRAW_ROI, OPLQT, precision values without converting them to single-
PLOT, PLOTS, precision.
POLYFILL, SURFACE,
XYOUTS

[XYZ]RANGE

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

This keyword now accepts a 2-element vector of
double-precision values without converting them to
single-precision.

[XYZ]TICKFORMAT

Affected Routines

Description

AXIS, CONTOUR,
PLOT,
SHADE_SURF,
SURFACE

This keyword may now be set to either asingle
string or an array of strings. Each string corresponds
to alevel of the axis.

If any of the strings is the name of a callback
function, the third argument to that function (that is
the argument indicating the value of the tickmark)
will be double-precision.

If any of the stringsis the name of a callback
function and if the [XY Z]TICKUNITS keyword is
set to one or more non-empty strings, the callback
function will be called with four parameters: Axis,
Index, Value and Level, where Axis, Index, and
Vaue are the same as before, and Level isthe Index
of the axis level for the current tick value to be
labelled (Level indices start at 0).

What's New in IDL 5.4

New and Enhanced IDL Routines

124

[XYZ]TICK_GET

Chapter 1: Overview of New Features in IDL 5.4

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

The value returned is now avector of double-
precision floating point values.

[XYZ]TICKINTERVAL

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

Set this keyword to a scalar to indicate the interval
between major tick marks for thefirst axislevel.

[XYZ]TICKLAYOUT

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

Set this keyword to a scalar that indicates the style to
draw each level of the axis.Valid values are:

* 0— Theaxisline, mgjor tick marks, and tick
labels are drawn.

e 1— Only thelabelsfor the mgjor tick marks are
drawn.

e 2— Each magjor tick interval is outlined by a box.

New and Enhanced IDL Routines

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 125

[XYZ]TICKUNITS

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,

Set this keyword to a string (or vector of strings) to
indicate the units to be used for axistick labeling.

SURFACE Valid values are:

e “Numeric’ (the default)

+ “Year

e “Month”

° 13 DW"

* “Hour”

e “Minute”

» “Second”

e “Time” — Usethisvalueto indicate that the units
are generic time units. IDL will compute
appropriate default intervals and tick formats
based on the range of values covered by the axis.

You can specify more than one type of unit. The axis
levels will be drawn in the order in which you specify
the strings with the first unit being drawn nearest to
the primary axisline.

[XYZ]TICKV

Affected Routines

Description

AXIS, CONTOUR,
PLOT, SHADE_SURF,
SURFACE

[XYZ]TICKV will now accept avector of double-
precision values without converting them to single-
precision.

What's New in IDL 5.4

New and Enhanced IDL Routines

126

Chapter 1: Overview of New Features in IDL 5.4

New and Updated System Variables

The following system variables have been added or updated in IDL 5.4:

System Variable

Description

IMAKE_DLL

A new system variable used to configure how IDL
uses the standard system C compiler and linker to
generate sharable libraries for the current platform.
The AUTO_GLUE keyword to the
CALL_EXTERNAL function and MAKE_DLL
procedure uses the standard system C compiler and
linker to generate sharable libraries that can be used
by IDL in various contexts (CALL_EXTERNAL,
DLMs, LINKIMAGE).

For more information, see “!MAKE_DLL System
Variable” on page 196.

IPT

IPT has changed from a single-precision 4-by-4
array of floating-point values to a double-precision
floating-point array of values.

I'VERSION

The !VERSION system variable has two new fields
caled MEMORY_BITSand FILE_OFFSET BITS
that tell you how many bits are used by the current
IDL to access memory and files, respectively.

I[XYZ].CRANGE

I[XY Z].CRANGE, formerly a 2-element vector of
single-precision floating point values, is now a 2-
element vector of double-precision floating point
values.

IIXYZ].RANGE I[XYZ].RANGE, formerly a 2-element vector of
single-precision floating point values, is now a 2-
element vector of double-precision floating point
values.

I[XYZ].S I[XYZ].S, formerly a 2-element vector of single-

precision floating point values, is now a 2-element
vector of double-precision floating point values.

New and Updated System Variables

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 127

System Variable

Description

I[XYZ].TICKFORMAT

The third argument (that is, the argument indicating
the value at the tick mark) for any callback
functions set viathe ![XY Z]. TICKFORMAT field
will now become a double-precision floating point
value (rather than a single-precision floating point
value).

I[XYZ].TICKLAYOUT

IIXYZ].TICKLAYOUT isascaar that indicates
the style to be used to draw each level of the axis.

I[XYZ].TICKINTERVAL

IIXYZ].TICKINTERVAL isascalar indicating the
interval between major tick marks for the first axis
level. This setting takes precedence over
IIXYZ].TICKS.

I[XYZ].TICKUNITS

IIXYZ].TICKUNITS isastring (or avector of
strings) indicating the units to be used for axis tick
labeling.

I[XYZ].TICKV

I[XYZ].TICKV, formerly avector of single-
precision floating point values, is now avector of
double-precision floating point values.

What's New in IDL 5.4

New and Updated System Variables

128 Chapter 1: Overview of New Features in IDL 5.4

Features Obsoleted in IDL 5.4

Obsoleted Routines

The following routines were present in IDL Version 5.3 but became obsolete in IDL
Version 5.4. These routines have been replaced with new routines or new keywordsto
existing routines that offer enhanced functionality. These obsoleted routines should
not be used in new IDL code.

Routine Replaced by
POLYFITW POLY_FIT, MEASURE _ERRORS keyword
RIEMANN RADON

Table 1-8: Routines Obsoleted in IDL 5.4

Obsoleted Keywords and Arguments

The following keywords and arguments became obsoletein IDL Version 5.4. These
keywords and arguments have been replaced with new routines or new keywords to
existing routines that offer enhanced functionality. These obsoleted keywords and
arguments should not be used in new IDL code.

Routine Keyword/Argument Description

LINFIT SDEV This keyword has been replaced by
the MEASURE_ERRORS keyword.
The definition of the
MEASURE_ERRORS keyword is
identical to that of the SDEV
keyword. The SDEV keyword is still
accepted for backwards compatibility.

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4

129

Routine

Keyword/Argument

Description

LMFHT

WEIGHTS

This keyword has been replaced by
the MEASURE_ERRORS keyword.
Code that uses the WEIGHTS
keyword will continue to work as
before, but new code should use the
MEASURE_ERRORS keyword. Note
that the definition of the
MEASURE_ERRORS keyword is not
the same as the WEIGHTS keyword.
Using the WEIGHTS keyword,
SORT(/WEIGHTSi]) represents the
measurement error for each point Y[i].
Using the MEASURE_ERRORS
keyword, the measurement error for
each point is represented as simply
MEASURE_ERRORSY]i].

OPEN

BINARY

This keyword is ho longer necessary
on Windows for input/output. Still
accepted, but quietly ignored, for
backward compatibility.

NOAUTOMODE

This keyword is no longer necessary
on Windows for input/output. Still
accepted, but quietly ignored, for
backward compatibility.

NOSTDIO

This keyword has been renamed
RAWIO to reflect the fact that stdio
may or may not actually be used. Still
accepted as a synonym for RAWIO.

What's New in IDL 5.4

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4

130 Chapter 1: Overview of New Features in IDL 5.4

Routine Keyword/Argument Description

POLY_FIT Y fit The Yfit argument has been replaced
by the YFIT keyword. Code using this
argument will continue to work as
before, but new code should use the
keyword instead.

Y band The Yband argument has been
replaced by the YBAND keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Sigma The Sgma argument has been
replaced by the Y ERROR keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Corrm The Corrm argument has been
replaced by the COVAR keyword.
Code using this argument will
continue to work as before, but new
code should use the keyword instead.

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4 What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4

131

Routine

Keyword/Argument

Description

REGRESS

Weights

The Weights argument has been
replaced by the
MEASURE_ERRORS keyword.
Code that uses the Weights argument
will continue to work as before, but
new code should use the
MEASURE_ERRORS keyword
instead. Note that the definition of the
MEASURE_ERRORS keyword is
different from that of the Weights
argument. Using the WWeights
argument, SQRT (1/Weightg[i])
represents the measurement error for
each point Y[i]. Using
MEASURE_ERRORS, the
measurement error for each point is
represented as simply
MEASURE_ERRORS]i]. Also note
that the RELATIVE_WEIGHTS
keyword is not necessary when using
the MEASURE_ERRORS keyword.

Yfit

The Yfit argument has been replaced
by the YFIT keyword.

Const

The Const argument has been replaced
by the CONST keyword.

Sigma

The Sgma argument has been
replaced by the SIGMA keyword.

Ftest

The Ftest argument has been replaced
by the FTEST keyword.

What's New in IDL 5.4

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4

132 Chapter 1: Overview of New Features in IDL 5.4

Routine Keyword/Argument Description
REGRESS R The R argument has been replaced by
(continued) the CORRELATION keyword.
Rmul The Rmul argument has been replaced
by the MCORRELATION keyword.
Chisg The Chisg argument has been replaced
by the CHISQR keyword.
Status The Status argument has been

replaced by the STATUS keyword.

RELATIVE_WEIGHT

This keyword is no longer necessary.
Code using the Weights argument and
RELATIVE_WEIGHT keyword will
continue to work as before, but new
code should use the
MEASURE_ERRORS keyword, for
which casethe RELATIVE_WEIGHT
keyword is not necessary. Using the
Weights argument, it was necessary to
specify the RELATIVE_WEIGHT
keyword if no weighting was desired.
Thisis not the case with the
MEASURE_ERRORS keyword—
when MEASURE_ERRORS is
omitted, REGRESS assumes you want
no weighting.

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4

What's New in IDL 5.4

Chapter 1: Overview of New Features in IDL 5.4 133
Routine Keyword/Argument Description
SVDHIT WEIGHTS This keyword has been replaced by

the MEASURE_ERRORS keyword.
Code that uses the WEIGHTS
keyword will continue to work as
before, but new code should use the
MEASURE_ERRORS keyword. Note
that the definition of the
MEASURE_ERRORS keyword is not
the same as the WEIGHTS keyword.
Using the WEIGHTS keyword,
V/WEIGHTY]i] represents the
measurement error for each point Y [i].
Using the MEASURE_ERRORS
keyword, the measurement error is
represented as simply
MEASURE_ERRORSY]i].

What's New in IDL 5.4

Table 1-9: Keywords/Arguments Obsoleted in IDL 5.4

Features Obsoleted in IDL 5.4

134 Chapter 1: Overview of New Features in IDL 5.4
Platforms Supported in this Release

IDL 5.4 supports the following platforms and operating systems:

Platform Vendor Hardware Ogisrfléirgg S\l;;';ioorrt]esd
VMS Compaqg Alpha VMS 7.1
UNIXT Compaqg Alpha Tru64 UNIX | 4.0
Compaq Alpha Linux Red Hat 6.211
HP PA-RISC HP-UX 10.20, 11.0
IBM RS/6000 AlIX 4.3
Intel Intel x86 Linux Red Hat 6.0,
6.2t
SGl Mips IRIX 6.4, 6.5
SUN SPARC Solaris 26,7,8
SUN SPARC Solaris 7,8
(64-bit Ultra)
SUN Intel x86 Solaris 26,7
Windows Microsoft | Intel x86 Windows 95b, 98,
NT 4.0, 2000
Macintosh Apple PowerMACTTt | MacOS 8.%, 9.x

Table 1-10: Platforms Supported in IDL 5.4

T For UNIX, the supported versionsindicate that IDL was either built (the lowest
version listed) or tested on that version. You caninstall and run IDL on other versions
that are binary compatible with those listed.

11 IDL 5.4 was built on the Linux 2.2 kernel with gl i bc 2.1 using Red Hat Linux. If
your version of Linux is compatible with these, it is possible that you can install and
run IDL on your version.

11+ Includes G3, G4 and iMac

Platforms Supported in this Release

What's New in IDL 5.4

Chapter 2:
Date/Time Plotting
In IDL

This chapter contains the following topics:

OvErvIeW . ..o 136 Displaying Date/Time Data on an Axisin

How to Generate Date/TimeData 138 DirectGraphics 140
Displaying Date/Time Data on an Axisin
Object Graphics 148

What's New in IDL 5.4 135

136

Chapter 2: Date/Time Plotting in IDL

Overview

Dates and times are among the many types of information that numerical data can
represent. IDL provides a number of routines that offer specialized support for
generating, analyzing, and displaying date- and time- based data (herein referred to as
date/time data).

Julian Dates and Times

Overview

Within IDL, dates and times are typically stored as Julian dates. A Julian dateis
defined to be the number of days elapsed since noon on January 1, 4713 BCE.
Following the astronomical convention, a Julian day is defined to start at 12pm
(noon). The following table shows afew examples of calendar dates and their
corresponding Julian dates.

Calendar Date Julian Date

January 1, 4713 B.C.E., a 12pm 0
January 2, 4713 B.C.E., a 12pm 1
January 1, 2000 at 12pm 2451545

Table 2-1: Example Julian Dates

Julian dates can a so include fractional portions of aday, thereby incorporating hours,
minutes, and seconds. If the day fraction isincluded in a Julian date, it is represented
as adouble-precision floating point value. The day fraction is computed as follows:

hour = minute . seconds

dayFraction = 24.d 1440.d 86400.d

One advantage of using Julian dates to represent dates and times is that agiven
date/time can be stored within a single variable (rather than storing the year, month,
day, hour, minute, and second information in six different variables). Because each
Julian date is simply a number, IDL’s numerical routines can be applied to Julian
datesjust as for any other type of number.

What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 137

Precision of Date/Time Data

The precision of any numerical value is defined as the smallest possible number that
can be added to that value that produces a new value different from the first.
Precisionistypically limited by the datatype of the variable used to store the number
and the magnitude of the number itself. Within IDL, the following guide should be
used when choosing a data format for date/time data:

« Timevaluesthat require a high precision, and that span arange of afew days
or less, should be stored as double-precision valuesin units of time elapsed
since the starting time, rather than in Julian date format. An example would be
the seconds elapsed since the beginning of an experiment. In this case, the data
can be treated within IDL as standard numeric data without the need to utilize
IDL’s specialized date/time features.

» Date valuesthat do not include the time of day may be stored as long-integer
Julian dates. The Julian date format has the advantage of being compact (one
value per date) and being evenly spaced in days. As an example, January 1st
for the years 2000, 2001, and 2002 can be stored as Julian days 2451545,
2451911, and 2452276. The precision of thisformat is 1 day.

« Datevalueswhereit is necessary to include the time of day can be stored as
double-precision Julian dates, with the time included as a day fraction.
Because of the large magnitude of the Julian date (such as Julian day 2451545
for 1 January 2000), the precision of most Julian datesislimitedto 1
millisecond (0.001 seconds).

To determine the precision of a Julian date/time value, you can use the IDL
MACHAR function:

; Set date to January 1, 2000, at 12:15pm
julian = JULDAY(1, 1, 2000, 12, 15, 0)

; get machi ne characteristics
machi ne = MACHAR(/ DOUBLE)

; multiply by floating-point precision
preci sion = julian*machi ne. eps

; convert to seconds
PRI NT, precision*86400d0

What's New in IDL 5.4 Overview

138 Chapter 2: Date/Time Plotting in IDL

How to Generate Date/Time Data

The TIMEGEN function returns an array of double precision floating point values
that represent date/time in terms of Julian dates. The first value of the returned array
corresponds to a start date/time, and each subsequent value corresponds to the start
date/time plus that array element's one-dimensional subscript multiplied by a step
size for a given date/time unit. Unlike the other array generation routinesin IDL,
TIMEGEN includes a START keyword, which is necessary if the starting date/time
isoriginaly provided in calendar (month, day, year) form.

The following example begins with a start date of March 1, 2000 and increments
every month for afull year:

date_time = TIMEGEN(12, UNIT = 'Mnths', $
START = JULDAY(3, 1, 2000))

where the UNIT keyword is set to' Mont hs' to increment by month and the START
keyword is set to the Julian date form of March 1, 2000.

Theresults of the above call to TIMEGEN can be output using either of the following
methods:

1. Using the CALDAT routine to convert the Julian dates to calendar dates:

CALDAT, date_tinme, nonth, day, year

FORi = 0, (N_ELEMENTS(date tinme) - 1) DO PRINT, $
nmonth[i], day[i], year[i], $
FORMAT = '(i2.2, "/I", i2.2, "I", i4)'

2. Using the calendar format codes:
PRI NT, date_tinme, format ='(C(CMJ 2.2, "/", CDI2.2, “/", CYI))"
The resulting calendar dates are printed out as follows:

03/ 01/ 2000
04/ 01/ 2000
05/ 01/ 2000
06/ 01/ 2000
07/ 01/ 2000
08/ 01/ 2000
09/ 01/ 2000
10/ 01/ 2000
11/ 01/ 2000
12/ 01/ 2000
01/ 01/ 2001
02/ 01/ 2001

How to Generate Date/Time Data What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 139

The TIMEGEN routine contains several keywords to provide specific date/time data
generation. For more information, see TIMEGEN in the IDL Reference Guide.

What's New in IDL 5.4 How to Generate Date/Time Data

140 Chapter 2: Date/Time Plotting in IDL

Displaying Date/Time Data on an AXxis in
Direct Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (X, y or z).
The date/time data is stored as Julian dates, but the LABEL_DATE function and
AXIS keywords alow you to display this data as calendar dates. The following
examples show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

nunmber _sanpl es = 37

date_time = TI MEGEN(nunmber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

di spl acement = SI N(10. *! DTOR* FI NDGEN(nunber _sanpl es))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import datafrom afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional datawith the PLOT routine, the format of the
date/time valuesis specified through the LABEL _DATE routine as follows

date_| abel = LABEL_DATE(DATE_FORMAT = [' % : %8 |)
where %l represents minutes and %S represents seconds.

The resulting format is specified in the call to the PLOT routine with the
XTICKFORMAT keyword:

PLOT, date_tinme, displacenent, /XSTYLE, $
; displaying titles.
TITLE = ' Measured Signal', $
XTI TLE = ' Time (seconds)', $
YTI TLE = ' Di spl acenent (inches)', $
; applying date/tine formats to X-axis | abels.
XTI CKFORVAT = ' LABEL DATE , $
XTICKUNITS = '"Tine', $
XTI CKI NTERVAL = 5

Displaying Date/Time Data on an Axis in Direct Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 141

The XTICKUNITS keyword is set to note the tick labels contain date/time data. The
XTICKINTERVAL keyword is set to place the magjor tick marks at every five second
interval. These keyword settings produce the following results:

Measured Signal

0.4

Displacement {inches)
=
&

0.5

_1 .O 1 1 | 1 1 | 1 1 1 | 1 1 1 | 1 1 1 1 | 1 1 1 |
59:40 54:45 5950 59:55 0Q:00 0008
Time {seconds)

Figure 2-1: Displaying Date/Time data with PLOT

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
a so includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the XTICKUNITS keyword.
You can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%: %8, "%, ' %))

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

142

Chapter 2: Date/Time Plotting in IDL

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, thefirst level (closest to the axis) will contain minute and second
values separated by a colon (%l:%S). The second level (just below thefirst level) will
contain the hour values (%H). The third level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y’). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL _DATE routine, you must also change the
settings of the keywords to the PLOT routine to specify a multiple level axis:

PLOT, date_tine, displacenent, /XSTYLE, $
; displaying titles.
TITLE = ' Measured Signal', $
XTITLE = 'Time (seconds)', $
YTI TLE = ' Di spl acenent (inches)', $
; applying date/time formats to X-axis |abels.
PCSITION = [0.2, 0.25, 0.9, 0.9], $
XTI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE , 'LABEL_DATE'], $
XTICKUNITS = ['Time', 'Hour', 'Day']., $
XTI CKINTERVAL = 5

The POSITION keyword is set to allow the resulting display to contain all three
levels and the title of the date/time axis. The X TICKFORMAT is now set to a string
array containing an element for each level of the axis. The XTICKUNITS keyword is
set to note the unit of each level. These keyword settings produce the following
results:

Displaying Date/Time Data on an Axis in Direct Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 143

Measured Signal
—

0.4

0.5

Displacement {inches)
=
&
T T T T | T T T T | T T T T | T T T T

=10 |

L L |
58135

59:40

T R
59:45

L PR |
59:50

L |
[Fp Rl

L L |
000
|

A0S

15

Mar 30, 2000

Time {seconds)

Figure 2-2: Displaying Three Levels of Date/Time data with PLOT

Notice the three levels of the x-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after theinitial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000:

nunber _sanpl es = 37

date_time = TI MEGEN(nunber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nunber _sanpl es)

tenperature = BYTSCL(SIN(10.*! DTOR* $
FI NDGEN(nunmber _sanpl es)) # COS(! DTOR*angl e))

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

144

Chapter 2: Date/Time Plotting in IDL

Since the final contour display will be filled, we should define a color table:

DEVI CE, DECOMPOSED = 0
LOADCT, 5

The call to the DEVICE command with the DECOMPOSED keyword set to zero
alows color tables to be used on TrueColor displays, which may be the default
setting on some systems. The call to the LOADCT routine loads the Standard
Gamma-1l (number 5) color table, which isa part of IDL’s libraries.

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL _DATE routine as follows

date | abel = LABEL_DATE(DATE_FORMAT = $
%%, "%, ' W %W])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second values separated
by acolon (%l:%S). The second level (just below the first level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year val ue separated from the day and
month values by a comma (%D %M, %Y).

The resulting format is specified by using the CONTOUR routine with the
XTICKFORMAT keyword:

CONTOUR, tenperature, angle, date_tinme, $
; specifying contour levels and fill colors.
LEVELS = BYTSCL(| NDGEN(8)), /XSTYLE, /YSTYLE, $
C COLORS = BYTSCL(I NDGEN(8)), /FILL, $
; displaying titles.
TITLE = ' Measured Tenperature (degrees Celsius)', $
XTI TLE = ' Angl e (degrees)', $
YTITLE = 'Time (seconds)', $
; applying date/tine formats to X-axis | abels.
POSITION = [0.2, 0.25, 0.9, 0.9], $
YTI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
YTICKUNNTS = ['"Tine', '"Hour', 'Day'], $
YTI CKINTERVAL = 5, $
YTl CKLAYOQUT = 2
; Applying contour lines over the original contour display.
CONTOUR, tenperature, angle, date_time, /OVERPLOT, $
LEVELS = BYTSCL(| NDGEN(8))

Asin the plot example, the POSITION keyword is set to allow the resulting display
to contain all three levels and the title of the date/time axis. The Y TICKUNITS

Displaying Date/Time Data on an Axis in Direct Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 145

keyword is set to note the unit of each level. And the Y TICKINTERVAL keyword is
set to place the major tick marks at every five second interval.

This example also containsthe Y TICKLAYOUT keyword. By default, this keyword
is set to 0, which provides the date/time layout shown in the plot example. In this
example, YTICKLAYOUT is set to 2, which rotates and boxes the tick labels to
provide the following results:

Measured Temperature (degrees Celsius)

) _

15

Time {seconds)
Mar 30, 2300

&) 100 200 300
Angle {degress)

Figure 2-3: Displaying Date/Time Data with CONTOUR

Using System Variables to Display Date/Time Data

The settings we used to display our date/time data could have been specified through
system variables instead of keywords. The following table shows the relationship
between these keywords and their system variables:

Keywords System Variables

[XYZ]JTICKUNITS I[XYZ].TICKUNITS

Table 2-2: Relationship Between Keywords and System Variables

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

146 Chapter 2: Date/Time Plotting in IDL

Keywords System Variables
[XYZ]TICKINTERVAL IIXYZ].TICKINTERVAL
[XYZ]TICKLAYOUT I[XYZ].TICKLAYOUT

Table 2-2: Relationship Between Keywords and System Variables

Usually, keywords are used more frequently than system variables, but system
variables are better when trying to establish a consistent display style. For example,
we could have established a date/time axis style with these system variables before
producing our previous displays:

; Establishing an axis style.
I X. TI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE , 'LABEL_DATE']
IXTICKUNITS = ['Time', 'Hour', 'Day']
I’ X. TICKINTERVAL = 5
I X TI CKLAYQUT = 2
Di spl ayi ng dat a.
PLOT, date_tinme, displacenent, /XSTYLE, $
TITLE = ' Measured Signal', $
XTITLE = 'Time (seconds)', $
YTI TLE = ' Di splacenent (inches)', $
POSITION = [0.2, 0.7, 0.9, 0.9]
CONTOUR, tenperature, date_tinme, angle, /FILL, $
LEVELS = BYTSCL(I NDGEN(8)), /XSTYLE, /YSTYLE, $
C COLORS = BYTSCL(| NDGEN(8)), /NCERASE, $
TITLE = ' Measured Tenperature (degrees Celsius)', $
XTITLE = 'Angle (degrees)', $
YTITLE = ' Time (seconds)', $
POSITION = [0.2, 0.25, 0.9, 0.45]
CONTOUR, tenperature, date_tinme, angle, /OVERPLOT, $
LEVELS = BYTSCL(| NDGEN(8))
I X, TI CKLAYQUT = 0
I' X, TICKINTERVAL = 0
IXTICKUNITS = "
I X, TI CKFORMAT = '

Displaying Date/Time Data on an Axis in Direct Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 147

Notice these system variables are set to their default values after the two displays are
shown. When using system variables, instead of keywords, remember to reset them
back to their default values. The above example produces the following results:

Measured Signal

[}

Displacement {inches)
.lD < o
tn o in

TTTT | TTTT TTT | TTTT

| | |

|
=

I59:35 I59:4O i59:4-5 i59:50 i5§’:55 000

Mar 30, 2000

Time {seconds)

Angle {degress)

i59:35 i59:40 i59:4~5 59:50 E Rl 000

Mar 30, 2000

Time {seconds)

Figure 2-4: Date/Time Axis Style Established With System Variables

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Direct Graphics

148 Chapter 2: Date/Time Plotting in IDL

Displaying Date/Time Data on an AXxis in
Object Graphics

You can display date/time data on plots, contours, and surfaces through the tick
settings of the date/time axis. Date/time data can be displayed on any axis (X, y or 2).
The date/time datais stored as Julian dates, but the LABEL_DATE routine and axis
keywords allow you to display this data as calendar dates. The following examples
show how to display one-dimensional and two-dimensional date/time data.

Displaying Date/Time Data on a Plot Display

Date/time data usually comes from measuring data values at specific times. For
example, the displacement (in inches) of an object might be recorded at every second
for 37 seconds after the initial recording of 59 minutes and 30 seconds after 2 o'clock
pm (14 hundred hours) on the 30th day of March in the year 2000 as follows

nunmber _sanpl es = 37

date_time = TI MEGEN(nunmber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

di spl acement = SI N(10. *! DTOR* FI NDGEN(nunber _sanpl es))

Normally, this type of data would be imported into IDL from a data file. However,
this section is designed specifically to show how to display date/time data, not how to
import datafrom afile; therefore, the data for this example is created with the above
IDL commands.

Before displaying this one-dimensional datawith the IDLgrPlot object, the format of
the date/time valuesis specified through the LABEL _DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = ['%: %8])
where %l represents minutes and %S represents seconds.
Before applying the results from LABEL _DATE, we must first create (initialize) our
display aobjects:

oPl ot W ndow = OBJ_NEW' | DLgr Wndow , RETAIM = 2, $
DI MENSI ONS = [800, 600])

oPlotView = OBJ_NEW"' | DLgr Vi ew , / DOUBLE)

oPl ot Mbdel = OBJ_NEW' | DLgr Mbdel ')

oPlot = OBJ_NEW' IDLgrPlot', date_tine, displacement, $
/ DOUBLE)

The oPlotModel object will contain the IDLgrPlot and IDLgrAXxis objects. The
oPlotView object contains the oPlotModel object with the DOUBLE keyword. The

Displaying Date/Time Data on an Axis in Object Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 149

DOUBLE keyword is set for the oPlotView and oPlot objects because the date/time
datais made up of double-precision floating-point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXis object, the oPlot object is created first to provide a display
region for the axes:

oPl ot -> CetProperty, XRANGE = xr, YRANGE = yr

xs = NORM_COORD(xr)

xs[0] = xs[0] - 0.5

ys = NORM _COORD(yr)

ys[0] = ys[0] - 0.5

oPl ot -> SetProperty, XCOORD _CONV = xs, YCOORD _CONV = ys

The NORM_COORD routine is used to create anormalized (0 to 1) display
coordinate system. This coordinate system will also apply to the IDLgrAXxis objects:

; X-axis title.

oText XAxis = OBJ_NEW' IDLgrText', 'Tine (seconds)')

; X-axis (date/tine axis).

oPl ot XAxis = OBJ_NEW' I DLgr Axis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD CONV = vys, TITLE = oText XAxis, $
LOCATION = [xr[0], yr[O0]], TICKDDR =0, $
TICKLEN = (0.02*(yr[1] - yr[0])), $
TI CKFORMAT = [' LABEL_DATE'], TICKINTERVAL = 5, $

TICKUNITS = ["Tinme'])
o Y-axis title.
oText YAxis = OBJ_NEW' | DLgr Text', 'Displacenment (inches)')
o Y-axis.

oPl ot YAxis = OBJ_NEW' IDLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD_CONV = xs, YCOORD _CO\V =ys, TITLE = oTextYAxis, $
LOCATION = [xr[O], yr[O]], TICKDOR =10, $
TICKLEN = (0.02*(xr[1] - xr[0])))
plot title.
oPl ot Text = OBJ_NEW' I DLgrText', 'Measured Signal', $
LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[O] + yr[1])))], $
XCOORD_CONV = xs, YCOORD_CO\V =ys, $
ALI GNMENT = 0.5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the X-
axis as adate/time axis.

These abjects are now added to the oPlotModel object and this model is added to the
oPlotView object:

oPl ot Mbdel -> Add, oPl ot
oPl ot Mbdel -> Add, oPl ot XAxi s
oPl ot Mbdel -> Add, oPl ot YAXi s

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

150 Chapter 2: Date/Time Plotting in IDL

oPl ot Mbdel -> Add, oPIl ot Text
oPl ot Vi ew -> Add, oPIl ot Model

Now the oPlotView abject, which contains all of these objects, can be viewed in the
oPlotWindow object:

oPl ot W ndow -> Draw, oPl ot Vi ew

The Draw method to the oPlotWindow object produces the following results:

Measured Signal

Displacement (inches)

1 1 1 1 1 1 1
5%:35 59:40 59:45 59:50 59:55 00:00 00:05
Time (seconds)

Figure 2-5: Displaying Date/Time data with IDLgrPlot

The above display shows the progression of the date/time variable, but it does not
include all of the date/time data we generated with the TIMEGEN routine. This data
aso includes hour, month, day, and year information. IDL can display this
information with additional levels to the date/time axis. You can control the number
of levelsto draw and the units used at each level with the TICKUNITS keyword. You
can specify the formatting for these levels by changing the DATE_FORMAT
keyword setting to the LABEL_DATE routine:

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%:9%8, "%, "D W %W'])

where %H represents hours, %D represents days, %M represents months, and %Y
represents years. Notice DATE_FORMAT is specified with a three-element vector.
Date/time data can be displayed on an axis with three levels. The format of these
levels are specified through this vector.

In this example, thefirst level (closest to the axis) will contain minute and second
values separated by acolon (%l:%S). The second leve (just below the first level) will

Displaying Date/Time Data on an Axis in Object Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 151

contain the hour values (%H). Thethird level (the final level farthest from the axis)
will contain the day and month values separated by a space and year value separated
from the day and month values by a comma (%D %M, %Y). For more information,
see LABEL_DATE in the IDL Reference Guide.

Besides the above change to the LABEL _DATE routine, we must also change the
settings of the IDLgrAXxis properties to specify amultiple level axis:

oPl ot XAxi s -> Set Property, $
TI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE, 'LABEL_DATE'], $
TICKUNITS = ['Time', 'Hour', 'Day']
The TICKFORMAT is now set to astring array containing an element for each level
of the axis. The TICKUNITS keyword is set to note the unit of each level. These
property settings produce the following results:

Measured Signal

1.0

Displacement (inches)
o a
[« o

&
o

1.0 59:35 59:40 5%:45 59:50 59:55 00:00 00:05

15

Mar 30, 2000
Time (seconds)

Figure 2-6: Displaying Three Levels of Date/Time data with IDLgrPlot

Notice the three levels of the X-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL's memory, the object references for oPlotView, oTextXAxis, and
oTextYAXis should be destroyed. Therefore, after the display is drawn, the
OBJ DESTROY routine should be called:

OBJ_DESTROY, [oPlotView, oTextXAxis, oText YAXis]

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

152 Chapter 2: Date/Time Plotting in IDL

The display will remain until closed, but the object references are now freed from
IDL's memory.

Displaying Date/Time Data on a Contour Display

Another possible example may be the surface temperature (in degrees Celsius) of
each degree of asingle circle on a sphere recorded at every second for 37 seconds
after theinitial recording of 59 minutes and 30 seconds after 2 o'clock pm (14
hundred hours) on the 30th day of March in the year 2000

nunmber _sanpl es = 37

date_time = TI MEGEN(nunmber _sanples, UNITS = ' Seconds', $
START = JULDAY(3, 30, 2000, 14, 59, 30))

angl e = 10. *FI NDGEN(nunber _sanpl es)

tenperature = BYTSCL(SI N(10.*! DTOR* $
FI NDGEN(nunmber _sanpl es)) # COS(! DTOR*angl e))

As with the one-dimensional case, the format of the date/time values is specified
through the LABEL _DATE routine as follows

date_| abel = LABEL_DATE(DATE_FORMAT = $
['%:%, "%, ' W %W])

where %l represents minutes, %S represents seconds, %H represents hours, %D
represents days, %M represents months, and %Y represents years.

Thefirst level (closest to the axis) will contain minute and second values separated
by acolon (%l:%S). The second level (just below thefirst level) will contain the hour
values(%H). The third level (the final level farthest from the axis) will contain the
day and month values separated by a space and year value separated from the day and
month values by a comma (%D %M, %Y).

Since the final contour display will be filled, we should define a color palette:

oContourPalette = OBJ_NEW' I DLgr Pal ette')
oCont our Pal ette -> LoadCT, 5

Asin the one-dimensional example, the display must be initialized:

Displaying Date/Time Data on an Axis in Object Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 153

oCont our Wndow = OBJ_NEW' | DLgrWndow , RETAIN = 2, $
DI MENSI ONS = [800, 600])

oCont ourView = OBJ_NEW"' I DLgr Vi ew , / DOUBLE)

oCont our Model = OBJ_NEW' | DLgr Mbdel ")

oContour = OBJ_NEW' I DLgrContour', tenperature, $
GEOWX = angle, GEOW = date_tinme, GEOVZ = 0., $
/ PLANAR, /FILL, PALETTE = oContourPalette, $
/ DOUBLE_GEOM C _VALUE = BYTSCL(I NDGEN(8)), $
C COLOR = BYTSCL(| NDGEN(8)))

; Applying contour lines over the original contour display.

oCont our Li nes = OBJ_NEW' | DLgr Contour', tenperature, $
GEOWX = angle, GEOW = date_tine, GEOMZ = 0.001, $
/ PLANAR, /DOUBLE_GEOM C VALUE = BYTSCL(| NDGEN(8)))

The oContourModel object will contain the IDLgrContour and IDLgrAXxis objects.
The oContourView object contains the oContourM odel with the DOUBLE keyword.
The DOUBLE and DOUBLE_GEOM keywords are set for the oContourView and
oContour objects because date/time data is made up of double-precision floating-
point values.

Although the date/time part of the datawill actually be contained and displayed
through the IDLgrAXis object, the oContour object is created first to provide a
display region for the axes.

oContour -> CetProperty, XRANCE = xr, YRANGE = yr, ZRange = zr
Xs = NORM_COORD(xr)

xs[0] = xs[0] - 0.5

ys = NORM_COORD(yr)

ys[0] = ys[0] - 0.5

oContour -> SetProperty, XCOORD _CONV = xs, YCOORD CONV = ys
oCont ourLi nes -> SetProperty, XCOORD CONV = xs, YCOORD _CONV = ys

The oContourLines object is created to display contour lines over the filled contours.
Note these lines have a GEOMZ difference of 0.001 from the filled contours. This
difference is provided to display the lines over the filled contours and not in the same
view plane. The NORM_COORD routineis used to create anormalized (0 to 1)
display coordinate system. This coordinate system will also apply to the IDLgrAxis
objects:

X-axis title.

oText XAxis = OBJ_NEW' I DLgrText', 'Angle (degrees)')
X- axi s.

oCont our XAxis = OBJ_NEW' I DLgr Axis', 0, /EXACT, RANGE = xr, $
XCOORD_CONV = xs, YCOORD CONV = vys, TITLE = oText XAxis, $
LOCATION = [xr[O], yr[O], zr[0] + 0.001], TICKDIR = 0, $
TICKLEN = (0.02*(yr[1] - yr[0])))
Y-axis title.

oText YAXis = OBJ_NEW' I DLgrText', 'Tine (seconds)')

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

154

Chapter 2: Date/Time Plotting in IDL

Y-axis (date/time axis).
oContour YAXi s = OBJ_NEW' I DLgrAxis', 1, /EXACT, RANGE = yr, $
XCOORD CONV = xs, YCOORD CONV = ys, TITLE = oTextYAxis, $
LOCATION = [xr[O], yr[O], zr[O] + 0.001], TICKDR =0, $
TICKLEN = (0.02*(xr[1] - xr[0])), $
TI CKFORMAT = [' LABEL_DATE', 'LABEL_DATE', 'LABEL_DATE'], $
TICKUNNTS = ['Tine', 'Hour', 'Day'], $
Tl CKLAYQUT = 2)
oCont our Text = OBJ_NEW ' | DLgr Text', $
' Measured Tenperature (degrees Celsius)', $
LOCATIONS = [(xr[0] + xr[1])/2., $
(yr[1] + (0.02*(yr[O] + yr[1])))]. $
XCOORD_CONV = xs, YOCOORD CONV = ys, $
ALl GNVENT = 0. 5)

The TICKFORMAT, TICKINTERVAL, and TICKUNITS keywords specify the Y-
axis as a date/time axis, which contains three levels related to the formats presented
in the call to the LABEL_DATE routine. This example also contains the
TICKLAYOUT keyword. By default, this keyword is set to 0, which provides the
date/time layout shown in the plot example. In thisexample, TICKLAYOUT is set to
2, which rotates and boxes the tick labels.

These objects are now added to the oContourModel object and this model is added to
the oContourView object:

oCont our Model
oCont our Model
oCont our Model

Add, oCont our

Add, oContourLi nes
Add, oCont our XAxi s
oCont our Mbdel Add, oCont our YAXi s
oCont our Mbdel Add, oCont our Text
oCont our Vi ew -> Add, oCont our Mbdel

[T T T
V V V VYV

Now the oContourView object, which contains all of these objects, can be viewed in
the oContourWindow object:

oCont our W ndow -> Draw, oContour Vi ew

The Draw method to oContourWindow produces the following results:

Displaying Date/Time Data on an Axis in Object Graphics What's New in IDL 5.4

Chapter 2: Date/Time Plotting in IDL 155

Measured Temperature {degrees Celsius)

Mar 30, 2000

Time {seconds)

o] 100 200 300
Angle (degrees)

Figure 2-7: Displaying Date/Time data with IDLgrContour
Notice the three levels of the y-axis. These levels are arranged as specified by the
previous call to the LABEL_DATE routine.

To maintain IDL’s memory, the object references for oContourView,
oContourPalette, oTextX Axis, and oTextYAXis should be destroyed. Therefore, after
the display isdrawn, the OBJ_DESTROY routine should be called:

OBJ_DESTROY, [oContourView, oContourPalette, $
oText XAxi s, oText YAXi s]

The display will remain until closed, but the object references are now freed from
IDL’s memory.

What's New in IDL 5.4 Displaying Date/Time Data on an Axis in Object Graphics

156 Chapter 2: Date/Time Plotting in IDL

Displaying Date/Time Data on an Axis in Object Graphics What's New in IDL 5.4

Chapter 3:

New IDL Routines

This chapter describes IDL Routines introduced in IDL version 5.4.

« ARRAY_ EQUAL
« BESELK

« BREAK

« COLORMAP_APPLICABLE
« CONTINUE

« FILE_CHMOD

« FILE DELETE

« FILE_EXPAND_PATH

« FILE_MKDIR

e FILE_TEST

« FILE_ WHICH

« HOUGH

What's New in IDL 5.4

LAGUERRE
LEGENDRE
MAKE_DLL
MAP_2POINTS
MATRIX_MULTIPLY
MEMORY
RADON
SAVGOL
SOCKET
SPHER_HARM
SWITCH
TIMEGEN

WV_CWT
WV_DENOISE
WV_FN_GAUSSIAN
WV_FN_MORLET
WV_FN_PAUL
XDXF

XPCOLOR
XPLOT3D

XROI

XVOLUME

157

158 Chapter 3: New IDL Routines
ARRAY_EQUAL

The ARRAY_EQUAL function is afast way to compare data for equality in
situations where the index of the elements that differ are not of interest. This
operation is much faster than using TOTAL(A NE B), because it stops the
comparison as soon as the first inequality is found, an intermediate array is not
created, and only one pass is made through the data. For best speed, ensure that the
operands are of the same data type.

Arrays may be compared to scalars, in which case each element is compared to the
scalar. For two arraysto be equal, they must have the same number of elements. If the
types of the operands differ, the type of the least precise is converted to that of the
most precise, unlessthe NO_TYPECONYV keyword is specified to prevent it. This
function works on al numeric types and strings.

Syntax
Result = ARRAY_EQUAL(Opl, Op2[,/NO_TYPECONV])
Return Value

Returns 1 (true) if, and only if, all elements of Opl are equal to Op2; returns O (false)
at the first instance of inequality.

Arguments

Op1, Op2

The variables to be compared.
Keywords

NO_TYPECONV

By default, ARRAY_EQUAL converts operands of different typesto acommon type
before performing the equality comparison. Set NO_TYPECONV to disallow this
implicit type conversion. If NO_TYPECONYV is specified, operands of different
types are never considered to be equal, even if their numeric values are the same.

Example

; Return True (1) if all elenments of a are equal to a O byte:

| F ARRAY_EQUAL(a, Ob) THEN ...

; Return True (1) if all elements of a are equal all elements of b:
I F ARRAY_EQUAL(a, b) THEN ...

ARRAY_EQUAL What's New in IDL 5.4

Chapter 3: New IDL Routines 159
BESELK

The BESELK function returns the K Bessel function of order N for the argument X.
The BESELK function is adapted from “ SPECFUN - A Portable FORTRAN
Package of Special Functions and Test Drivers’, W. J. Cody, Algorithm 715, ACM
Transactions on Mathematical Software, Vol 19, No. 1, March 1993.

Syntax
Result = BESELK(X, N)
Return Value

If X is double-precision, the result is double precision, otherwise the argument is
converted to floating-point and the result is floating-point.

Arguments

X

The expression for which the K Bessel function is required. The result will have the
same dimensions as X.

N

The order of the K Bessel function to calculate. N should be greater than or equal to 0
and less than 20, and can be either an integer or areal number.

Keywords
None
Example

The following example plots the | and K Bessel functions for orders 0, 1 and 2:
X = FI NDGEN(40)/ 10

;Plot | and K Bessel Functions:

PLOT, X, BESELI(X, 0), MAX VALUE=4, $
TITLE = 'l and K Bessel Functions'

OPLOT, X, BESELI (X, 1)

OPLOT, X, BESELI (X, 2)

OPLOT, X, BESELK(X, 0), LINESTYLE=2

OPLOT, X, BESELK(X, 1), LINESTYLE=2

What's New in IDL 5.4 BESELK

160 Chapter 3: New IDL Routines

OPLOT, X, BESELK(X, 2), LINESTYLE=2

; Annotate plot:

xcoords = [.18, .45, .95, 1.4, 1.8, 2.4]

ycoords = [2.1, 2.1, 2.1, 1.8, 1.6, 1.4]

labels = ['"!8KIXIDO',"!8KIXIDL',"'!8KI XID2',"'!8l!X D0,
g xipl, 8l Xtpe'

XYQUTS, xcoords, ycoords, |abels, /DATA

Thisresultsin the following plot:

| ond K Bessel Functions
I L L L L R L R L B

()
oY

Figure 3-1: | and K Bessel Functions.

See Also

BESELI, BESELJ, BESELY

BESELK What's New in IDL 5.4

Chapter 3: New IDL Routines

BREAK

161

The BREAK statement provides a convenient way to immediately exit from aloop

(FOR, WHILE, REPEAT), CASE, or SWITCH statement without resorting to
GOTO statements.

Note

BREAK isan IDL statement. For information on using statements, see Chapter 11,
“Program Control” in Building IDL Applications.

Syntax
BREAK

Example

This example exits the enclosing WHILE loop when the value of i hits 5.

I =0
VI LE (1) DO BEG N

i =i +1

IF (i eq 5) THEN BREAK
ENDVHI LE

What's New in IDL 5.4 BREAK

162 Chapter 3: New IDL Routines
COLORMAP_APPLICABLE

The COLORMAP_APPLICABLE function determines whether the current visual
class supports the use of acolormap, and if so, whether colormap changes affect pre-
displayed Direct Graphics or if the graphics must be redrawn to pick up colormap
changes.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
col or map_appl i cabl e. prointhel i b subdirectory of the IDL distribution.

Syntax
Result = COLORMAP_APPLICABLE(redrawRequired)
Return Value

The function returns along value of 1 if the current visua class allows modification
of the color table, and O otherwise.

Arguments

redrawRequired

A named variable to retrieve a value indicating whether the visual class supports
automatic updating of graphics. The valueis O if the graphics are updated
automatically, or 1 if the graphics must be redrawn to pick up changes to the
colormap.

Keywords
None.
Example

To determine whether to redisplay an image after a colormap change:

result = COLORVAP_APPLI CABLE(r edr awRequi r ed)

IF ((result GI 0) AND (redrawRequired GI 0)) THEN BEG N
nmy_redraw

ENDI F

COLORMAP_APPLICABLE What's New in IDL 5.4

Chapter 3: New IDL Routines 163
CONTINUE

The CONTINUE statement provides a convenient way to immediately start the next
iteration of the enclosing FOR, WHILE, or REPEAT loop.

Note
Do not confuse the CONTINUE statement described here with the .CONTINUE
executive command. The two constructs are not related, and serve completely
different purposes.

Note
CONTINUE is not allowed within CASE or SWITCH statements. Thisisin
contrast with the C language, which does alow this.

For more information on using CONTINUE and other IDL program control
statements, see Chapter 11, “Program Control” in Building IDL Applications.

Syntax
CONTINUE
Example

This example presents one way (not necessarily the best) to print the even numbers
between 1 and 10.

FOR I = 1,10 DO BEG N
|f odd, start next iteration:
IF (I AND 1) THEN CONTI NUE
PRI NT, |
ENDFOR

What's New in IDL 5.4 CONTINUE

164

Chapter 3: New IDL Routines

FILE_CHMOD

The FILE_CHMOD procedure alows you to change the current access permissions
(sometimes known as modes on UNIX platforms) associated with afile or directory.
File modes are specified using the standard Posix convention of three protection
classes (user, group, other), each containing three attributes (read, write, execute).
These permissions can be specified as an octal bitmask in which desired permissions
have their associated bit set and unwanted ones have their bits cleared. Thisisthe
same format familiar to users of the UNIX chnod(1) command).

Keywords are available to specify permissions without the requirement to specify a
bitmask, providing a simpler way to handle many situations. All of the keywords
share asimilar behavior: Setting them to a non-zero value adds the specified
permission to the Mode argument. Setting the keyword to O removes that permission.

To find the current protection settings for a given file, you can usethe GET_MODE
keyword to the FILE_TEST function.

Syntax

FILE_CHMOD, File[, Mode] [, /A_EXECUTE |, /A_READ |, /A_WRITE]
[,/G_EXECTUE |/G_READ |, /G_WRITE]
[,/O_EXECTUE |/O_READ |, /O_WRITE]
[,/U_EXECTUE |/U_READ |, /U_WRITE]

UNIX-Only Keywords: [, /SETGID] [, /SETUID] [, /STICKY _BIT]

Arguments

File

A scalar or array of file or directory names for which protection modes will be
changed.

Mode

An optional bit mask specifying the absolute protection settings to be applied to the
files. If Modeis not supplied, FILE_CHMOD looks up the current modes for the file
and usesit instead. Any additional modes specified via keywords are applied relative
to the value in Mode. Setting a keyword adds the necessary mode bits to Mode, and
clearing it by explicitly setting a keyword to 0 removes those bits from Mode.

The values of the bitsin these masks correspond to those used by the UNIX
chmod(2) system call and chnod(1) user command, and are given in the following

FILE_CHMOD What's New in IDL 5.4

Chapter 3: New IDL Routines 165

table. Since these bits are usually manipulated in groups of three, octal notation is
commonly used when referring to them. When constructing a mode, the following
platform specific considerations should be kept in mind:

The setuid, setgid, and sticky bits are specific to the UNIX operating system,
and have no meaning elsewhere. FILE_CHMOD ignores them on non-UNIX
systems. The UNIX kernel may quietly refuseto set the sticky bit if you are not
the root user. Consult the chmod(2) man page for details.

The VM S operating system has four permission classes, unlike the 3 supported
by UNIX. Furthermore, each class has an additional bit (DELETE) not
supported by UNIX. IDL usesthe C runtime library chnmod() function
supplied by the operating system to trand ate between the UNIX convention
used by IDL and the native VM S permission masks. It mapsthe VMS
SYSTEM and OWNER classes to the user class, GROUP to group, and
WORLD to other. The DELETE hit is combined with the WRITE bit.

The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, setting for all three classes are
combined into a single request.

The Microsoft Windows and Macintosh operating systems always allow read
access to any filesvisibleto a program. FILE_CHMOD therefore ignores any
requests to remove read access.

The Microsoft Windows and Macintosh operating systems do not maintain an
execute bit for their files. Windows uses the file suffix to decide if afileis
executable, and Macintosh IDL only considers files of type APPL to be
executable. Therefore, FILE_CHMOD cannot change the execution status of a
file on these platforms. Such requests are quietly ignored.

Bit Octal Mask Meaning
12 ' 4000" o Setuid: Set user ID on execution.
11 ' 2000" o Setgid: Set group ID on execution.
10 ' 1000" o Turn on sticky bit. See the UNIX documentation
on chmod(2) for details.
' 0400 o Allow read by owner.
8 ' 0200' o Allow write by owner.

Table 3-1: UNIX chmod(2) mode bits

What's New in IDL 5.4 FILE_CHMOD

166 Chapter 3: New IDL Routines

Bit Octal Mask Meaning

' 0100 Allow execute by owner.

' 0040 Allow read by group.

' 0020 Allow write by group.

' 0010 Allow execute by group.

' 0004 Allow read by others.

' 0002 Allow write by others.

RIN|[W[lO|O| N
o|j|o|jo|jo|Oo|0O]|O

' 0001

Allow execute by others.

Table 3-1: UNIX chmod(2) mode bits
Keywords

A_EXECUTE

Execute access for all three (user, group, other) categories.
A_READ

Read access for all three (user, group, other) categories.
A_WRITE

Write access for al three (user, group, other) categories.
G_EXECUTE

Execute access for the group category.

G_READ

Read access for the group category.

G_WRITE

Write access for the group category.

O_EXECUTE

Execute access for the other category.

O_READ

Read access for the other category.

FILE_CHMOD What's New in IDL 5.4

Chapter 3: New IDL Routines

O_WRITE

Write access for the other category.

U_EXECUTE

Execute access for the user category.

U_READ

Read access for the user category.

U_WRITE

Write access for the user category.

UNIX-Only Keywords

SETGID

The Set Group ID bit.
SETUID

The Set User ID hit.
STICKY_BIT

Sets the sticky bhit.

Example

167

In the first example, we make the file noose. dat read only to everyone except the
owner of thefile, but not change any other settings:

FI LE_ CHMOD, 'npose. dat',

/U WRI TE, G WRI TE=0, O W\RI TE=0

In the next example, we make the file readable and writable to the owner and group,
but read-only to anyone else, and remove any other modes:

FI LE_CHMOD, 'noose. dat',

What's New in IDL 5.4

'664' 0

FILE_CHMOD

168 Chapter 3: New IDL Routines

FILE_DELETE

The FILE_DELETE procedure deletes afile or empty directory, if the process hasthe
necessary permissions to remove the file as defined by the current operating system.
FILE_CHMOD can be used to change file protection settings.

Syntax
FILE_DELETE, Filel[,... FileN] [, /QUIET]
Arguments

FileN

A scalar or array of file or directory names to be deleted, one name per string
element. Directories must be specified in the native syntax for the current operating
system. See “ Operating System Syntax” below for additional details.

Keywords

QUIET

FILE DELETE will normally issue an error if it is unable to remove arequested file
or directory. If QUIET isset, no error isissued and FILE_DELETE simply moves on
to the next requested item.

Operating System Syntax

The syntax used to specify directories for removal depends on the operating system
inuse, and isin general the same as you would use when issuing commands to the
operating system command interpreter.

Microsoft Windows users must be careful to not specify atrailing backslash at the
end of a specification. For example:

FI LE_DELETE, 'c:\nydir\nyfile'
and not:
FI LE_DELETE, 'c:\nydir\nyfile\'

For VMS users, the syntax for creating a subdirectory (as with the
CREATE/DIRECTORY DCL command) is not symmetric with that used to delete it
(using the DELETE,/DIRECTORY). FILE_DELETE follows the same rules. For

FILE_DELETE What's New in IDL 5.4

Chapter 3: New IDL Routines 169

instance, to create a subdirectory of the current working directory named
bul I wi nkl e and then removeit:

FILE_MKDIR ' [. bul I wi nkl e]"
FI LE_DELETE, ' bul | wi nkl e. di r’

Example

In this example, we remove an empty directory named noose. On the Macintosh,
UNIX, or Windows operating systems.

FI LE_DELETE, ' noose'
To do the same thing under VMS:

FI LE DELETE, 'npose.dir'

What's New in IDL 5.4 FILE_DELETE

170 Chapter 3: New IDL Routines

FILE_EXPAND_PATH

The FILE_EXPAND_PATH function expands a given file or partia directory name
toitsfully qualified name regardless of the current working directory.

Note

This routine should be used only to make sure that file paths are fully qualified, but
not to expand wildcard characters (e.g. *). The behavior of FILE EXPAND_PATH
when it encounters awildcard is platform dependent, and should not be depended
on. These differences are due to the underlying operating system, and are beyond
IDL’s control. To expand wildcards and obtain fully qualified paths, combine the
FINDFILE function with FILE_EXPAND_PATH:

A = FI LE_EXPAND_PATH(FI NDFI LE(' *. pro'))

Syntax

Result = FILE_EXPAND_PATH (Path)

Return Value

FILE EXPAND_PATH returns afully qualified file path that completely specifies
the location of Path without the need to consider the user’s current working directory.

Arguments

Path

A scalar or array of file or directory names to be fully qualified.
Keywords

None.

Example

In this example, we change directoriesto the IDL | i b directory and expand thefile
path for the DIST function:

cd, FILEPATH('', SUBDI RECTORY=['Ilib'])
print, FlILE EXPAND PATH(' dist.pro')

FILE_EXPAND_PATH What's New in IDL 5.4

Chapter 3: New IDL Routines 171

Thisresultsin the following if run on a UNIX system:

lusr/local/rsi/idl _5.4/1ib/dist.pro
See Also

FINDFILE

What's New in IDL 5.4 FILE_EXPAND_PATH

172

FILE_MKDIR

Chapter 3: New IDL Routines

The FILE_MKDIR procedure creates a new directory, or directories, with the default
access permissions for the current process.

Note
Usethe FILE_CHMOD procedure to alter access permissions.

If a specified directory has non-existent parent directories, FILE_MKDIR
automatically creates all the intermediate directories as well.

Syntax

FILE_MKDIR, FileL[,... FileN]
Arguments

FileN

A scalar or array of directory names to be created, one name per string el ement.
Directories must be specified in the native syntax for the current operating system.

Keywords
None.

Example
To create a subdirectory named noose in the current working directory on the
Macintosh, UNIX, or Windows operating systems:
FILE MKDI R, ' npose’
To do the same thing under VMS:
FILE MKDIR, '[.noose]'

FILE_MKDIR What's New in IDL 5.4

Chapter 3: New IDL Routines 173
FILE TEST

The FILE_TEST function checks files for existence and other attributes without
having to first open thefile.

Syntax

Result = FILE_TEST(File[, /DIRECTORY |, /EXECUTABLE |, /READ |
,IREGULAR]|, /WRITE |, /ZERO_LENGTH] [, GET_MODE=variabl€])

UNIX-Only Keywords: [, /BLOCK_SPECIAL |, /ICHARACTER_SPECIAL |
,IDANGLING_SYMLINK |, /NAMED_PIPE |, /SETGID |, /SETUID |, /SOCKET
|,/STICKY_BIT |, /SYMLINK]

UNIX and VM S-Only Keywords: [, /GROUP |, /USER]
Return Value

FILE TEST returns 1 (true), if the specified file exists and all of the attributes
specified by the keywords are also true. If no keywords are present, asimple test for
existence is performed. If the file does not exist or one of the specified attributesis
not true, then FILE_TEST returns O (false).

Arguments
File

A scalar or array of file namesto be tested. Theresult is of type integer with the same
number of elements asFile.

Keywords

DIRECTORY
Set this keyword to return 1 (true) if File exists and is a directory.
EXECUTABLE

Set this keyword to return 1 (true) if File exists and is executable. The source of this
information differs between operating systems:

* UNIX and VMS: IDL checks the per-file information (the execute bit)
maintained by the operating system.

What's New in IDL 5.4 FILE_TEST

174

FILE_TEST

Chapter 3: New IDL Routines

* Microsoft Windows: The determination is made on the basis of the file name
extension (e.g. . exe).

* Macintosh: Files of type ‘APPL’ (proper applications) are reported as
executable. This corresponds to “Double Clickable” applications.

GET_MODE

Set this keyword to a named variable to receive the UNIX style mode (permission)
mask for the specified file. The bitsin these masks correspond to those used by the
UNIX chnod(2) system call, and are explained in detail in the description of the
Mode argument to the FILE_CHMOD procedure. When interpreting the value
returned by this keyword, the following platform specific details should be kept in
mind:

» Thesetuid, setgid, and sticky bits are specific to the UNIX operating system,
and will never be returned on any other platform. Consult the chnod(2) man
page and/or other UNIX programming documentation for more details.

* TheVMS operating system has four permission classes, unlike the three
supported by UNIX. Furthermore, each class has an additional bit (DELETE)
not supported by UNIX. IDL usesthe C runtimelibrary st at () function
supplied by the operating system to trandate between the UNIX convention
used by IDL and the native VM S permission masks. It mapsthe VM S
OWNER to the user class, GROUP to group, and WORLD to other. The
DELETE bit is combined with the WRITE bit.

* The Microsoft Windows and Macintosh operating systems do not have 3
permission classes like UNIX does. Therefore, IDL returns the same settings
for all three classes.

* The Microsoft Windows and Macintosh operating systems to not maintain an
execute bit for their files. Windows uses the file suffix to decide if afileis
executable, and Macintosh IDL only considers files of type ‘APPL’ to be
executable.

READ
Set this keyword to return 1 (true) if File exists and is readable by the user.
REGULAR

Set this keyword to return 1 (true) if File existsand isaregular disk file and not a
directory, pipe, socket, or other specid file type.

What's New in IDL 5.4

Chapter 3: New IDL Routines 175

WRITE

Set this keyword to return 1 (true) if File exists and iswritable by the user.
ZERO_LENGTH

Set this keyword to return 1 (true) if File exists and has zero length.

Note
The length of adirectory is highly system dependent and does not necessarily
correspond to the number of filesit contains. In particular, it is possible for an
empty directory to report a non-zero length. RSI does not recommend using the
ZERO_LENGTH keyword on directories, as the information returned cannot be
used in ameaningful way.

UNIX-Only Keywords

BLOCK_SPECIAL

Set this keyword to return 1 (true) if File exists and is a block special device.
CHARACTER_SPECIAL

Set this keyword to return 1 (true) if File exists and is a character special device.
DANGLING_SYMLINK

Set this keyword to return 1 (true) if Fileisasymbolic link that points at a non-
existent file.

NAMED_PIPE

Set this keyword to return 1 (true) if File exists and is a named pipe (fifo) device.
SETGID

Set this keyword to return 1 (true) if File exists and has its Set-Group-1D bit set.
SETUID

Set this keyword to return 1 (true) if File exists and has its Set-User-ID bit set.
SOCKET

Set this keyword to return 1 (true) if File exists and isa UNIX domain socket.

What's New in IDL 5.4 FILE_TEST

176 Chapter 3: New IDL Routines

STICKY_BIT
Set this keyword to return 1 (true) if File exists and hasiits sticky bit set.
SYMLINK

Set thiskeyword to return 1 (true) if File existsand isasymbolic link that pointsat an
existing file.

UNIX and VMS-Only Keywords

GROUP

Set this keyword to return 1 (true) if File exists and belongs to the same effective
group ID (GID) asthe IDL process.

USER

Set this keyword to return 1 (true) if File exists and belongs to the same effective user
ID (UID) asthe IDL process.

Example

Does my IDL distribution support the IRIX operating system?

result = FILE TEST(!DIR + '/bin/bin.sgi', /D RECTORY)
PRINT, "IRIX IDL Installed: ', result ? 'yes' : 'no'

FILE_TEST What's New in IDL 5.4

Chapter 3: New IDL Routines 177
FILE WHICH

The FILE_WHICH function separates a specified file path into its component
directories, and searches each directory in turn for a specific file. This command is
modeled after the UNIX whi ch(1) command.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
file_which.prointheli b subdirectory of the IDL distribution.

Syntax
Result = FILE_WHICH([Path,] File[, /INCLUDE_CURRENT _DIR])
Return Value

Returns the path for the first file for the given name found by searching the specified
path. If FILE_WHICH does not find the desired file, aNULL string is returned.

Arguments

Path

A search path to be searched. If Path is not present, the value of the IDL PATH
system variable is used.

File
Thefileto look for in the directories given by Path.
Keywords

INCLUDE_CURRENT_DIR

If set, FILE_WHICH looks in the current directory before starting to search Path for
File. When IDL searches for aroutine to compile, it looks in the current working
directory before searching !'PATH. The INCLUDE_CURRENT _DIR keyword
alows FILE_ WHICH to mimic this behavior.

Example

To find the location of this routine;

Result = FILE WHICH(' fil e_which.pro')

What's New in IDL 5.4 FILE_WHICH

178 Chapter 3: New IDL Routines

To find the location of the UNIX | s command:

Result = FILE_WH CH(getenv(' PATH), 'Is")

FILE_WHICH What's New in IDL 5.4

Chapter 3: New IDL Routines 179
HOUGH

The HOUGH function implements the Hough transform, used to detect straight lines
within atwo-dimensional image. Thisfunction can be used to return either the Hough
transform, which transforms each nonzero point in an image to asinusoid in the
Hough domain, or the Hough backprojection, where each point in the Hough domain
istransformed to a straight line in the image.

Syntax

Hough Transform:

Result = HOUGH(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]
[, DY=scalar] [, /GRAY] [, NRHO=scalar] [, NTHETA=scalar] [, RHO=variabl€]
[, RMIN=scalar] [, THETA=variable] [, XMIN=scalar] [, YMIN=scalar])

Hough Backprojection:

Result = HOUGH(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /[DOUBLE] [, DX=scalar] [, DY=scalar] [, NX=scalar] [, NY=scalar]
[, XMIN=scalar] [, YMIN=scalar])

Return Value

Theresult of thisfunction is a two-dimensional floating-point array, or a complex
array if theinput image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Hough Transform Theory

The Hough transform is defined for afunction A(x, y) as.

00 00

H (6, p)= J‘_OOJ‘_OO A(Xy)d(p—xcosB —ysing) dx dy

What's New in IDL 5.4 HOUGH

180

HOUGH

Chapter 3: New IDL Routines
where d isthe Dirac delta-function. With A(x, y), each point (X, y) in the original

image, A, istransformed into asinusoid p = xcost — ysinG, where p isthe
perpendicular distance from the origin of aline at an angle ©:

YA [\

Image Domain Hough Domain

Figure 3-2: Hough Transform

Points that lie on the same line in the image will produce sinusoids that all crossat a
single point in the Hough transform. For the inverse transform, or backprojection,
each point in the Hough domain is transformed into a straight line in the image.

Usually, the Hough function is used with binary images, in which case H(6, p) gives
the total number of sinusoidsthat crossat point (8, p), and hence, the total number of
points making up the line in the origina image. By choosing athreshold T for

H(8, p), and using the inverse Hough function, you can filter the original image to
keep only linesthat contain at least T points.

How IDL Implements the Hough Transform

Consider an image A, of dimensions M by N, with array indicesm = 0,..., M-1 and
n=0,..., N-1.

The discrete formulafor the HOUGH function for Ay, is:

HOM =S S Amn 3(p.[0])

where the brackets [] indicate rounding to the nearest integer, and

p' = (MAX+ X,i,,)€0SO + (NAy +y, . .)sin®

min

What's New in IDL 5.4

Chapter 3: New IDL Routines 181

The pixels are assumed to have spacing Ax and Ay in the x and y directions. The
delta-function is defined as:

|:| = !
splp) =gt P=LPI
10 otherwise
How IDL Implements the Hough Backprojection

The backprojection, B, contains all of the straight lines given by the (6, p) points
givenin H(B, p). The discrete formulais

0 ing| > 42

a Zz H(6,p) &(n,[am + b]) |sing| >
an =0 p

1YY HEPmEAN+BY) jsing <2

U P 2

where the slopes and offsets are given by:

_Ax cosB _ P — XinCOSO — Y, SING
Ay sinf Aysin@
, 1 o P — XpinCOSO — Y i s SINO
a = = b =
a AxcosO
Arguments
Array

The two-dimensional array of size M by N which will be transformed. If the keyword
GRAY isnot set, then, for the forward transform, Array is treated as a binary image
with all nonzero pixels considered as 1.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.
When BACKPROJECT is set, Result will be an array of dimension NX by NY.

What's New in IDL 5.4 HOUGH

182

HOUGH

Chapter 3: New IDL Routines

Note
The Hough transform is not one-to-one; each point (X, y) is not mapped to asingle
(0, p). Therefore, instead of the original image, the backprojection, or inverse
transform, returns an image containing the set of al lines given by the (8, p) points.

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing Ap between p coordinates,
expressed in the same units as Array. The default is /SQRT(2) times the diagonal
distance between pixels, [(DX2+ DY2)/2]¥2. A larger value produces a coarser
resolution by mapping multiple pixels onto asingle p; thisis useful for images that
do not contain perfectly straight lines. A smaller value may produce undersampling
by trying to map fractional pixels onto p, and is not recommended. If
BACKPROJECT is specified, this keyword is ignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (X)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (Y)
coordinates. The default is 1.0.

GRAY

Set this keyword to perform aweighted Hough transform, with the weighting given
by the pixel values. If GRAY isnot set, theimageistreated as a binary image with all
nonzero pixels considered as 1. If BACKPROJECT is specified, this keyword is
ignored.

NRHO

Set this keyword equal to ascalar specifying the number of p coordinatesto use. The
default is 2 CEIL([MAX(X? +Y?2)]¥2 / DRHO) + 1. If BACKPROJECT is
specified, this keyword is ignored.

What's New in IDL 5.4

Chapter 3: New IDL Routines 183

NTHETA

Set this keyword equal to a scalar specifying the number of 8 coordinates to use over
theinterval [0,1. The default is CEIL(Tt [MAX (X2 +Y?2)]Y2 / DRHO). A larger
value will produce smoother results, and is useful for filtering before backprojection.
A smaller value will result in broken linesin the transform, and is not recommended.
If BACKPROJECT is specified, this keyword isignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinatesin the output array. The default is

FLOOR(2 MAX(JRHO|)(DX? + DY?)™Y2 + 1). For the forward transform this
keyword isignored.

NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinates in the output array. The default is

FLOOR(2 MAX(JRHO|)(DX?2 + DY?2)™Y2 + 1). For the forward transform, this
keyword isignored.

RHO

For the forward transform, set this keyword to a named variable that, on exit, will
containtheradia (p) coordinates. If BACKPROJECT is specified, this keyword must
contain the p coordinates of the input Array.

RMIN

Set this keyword equal to ascalar specifying the minimum p coordinate to use for the
forward transform. The default is—0.5(NRHO — 1) DRHO. If BACKPROJECT is
specified, this keyword isignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (8) coordinatesto use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, then on exit THETA will contain the 6
coordinates. If BACKPROJECT is specified, this keyword must contain the 6
coordinates of the input Array.

XMIN

Set thiskeyword equal to ascalar specifying the X coordinate of the lower-left corner
of the input Array. The default is«(M-1)/2, where Array isan M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the X

What's New in IDL 5.4 HOUGH

184 Chapter 3: New IDL Routines

coordinate of the lower-left corner of the Result. In this case the default is
-DX (NX-1)/2.

YMIN

Set this keyword equal to ascalar specifyingthe Y coordinate of the lower-l€eft corner
of theinput Array. The default is—(N-1)/2, where Array isan M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the Y
coordinate of the lower-left corner of the Result. In this case the default is

-DY (NY-1)/2.

Example

This example computes the Hough transform of a random set of pixels:

PRO hough_exanpl e

;Create an image with a random set of pixels
seed = 12345 ; renpve this line to get different random i nages
array = RANDOMJ(seed, 128, 128) GTI 0. 95

;Draw three lines in the imge
x = FI NDGEN(32)*4

array[x, 0.5*x+20] =1
array[x, 0.5*x+30] =1
array[- 0. 5*x+100, x] =

;Create di splay window, set graphics properties
W NDOW XSI ZE=330, YSI ZE=630, TI TLE=' Hough Exanpl e
! P. BACKGROUND = 255 ; white

IP.COLOR = 0 ; black

I P. FONT=2

ERASE

XYQUTS, .1, .94, 'Noise and Lines', /NORVAL
;Display the i nage. 255b changes bl ack values to white:
TVSCL, 255b - array, .1, .72, /NORWVAL

;Cal cul ate and di splay the Hough transform
result = HOUGH(array, RHO=rho, THETA=t het a)
XYQUTS, .1, .66, 'Hough Transform , /NORVAL
TVSCL, 255b - result, .1, .36, /NORMAL

;Keep only lines that contain nore than 20 points:
result = (result - 20) >0

; Find the Hough backprojection and display the output
backproject = HOUGH(result, /BACKPRQIECT, RHO=r ho, THETA=t het a)

HOUGH What's New in IDL 5.4

Chapter 3: New IDL Routines 185

XYQUTS, .1, .30, 'Hough Backprojection', /NORMAL
TVSCL, 255b - backproject, .1, .08, /NORVAL

END

The following figure displays the output of this example. The top image shows three
lines drawn within arandom array of pixelsthat represent noise. The center image
shows the Hough transform, displaying sinusoids for points that lie on the same line
in the original image. The bottom image shows the Hough backprojection, after
setting the threshold to retain only those lines that contain more than 20 points. The
Hough inverse transform, or backprojection, transforms each point in the Hough
domain into astraight linein the image.

MNoise and Lines

Hough Transform

Hough Backprojection

\

\

Figure 3-3: HOUGH example showing random pixels (top), Hough transform
(center) and Hough backprojection (bottom)

See Also

RADON

What's New in IDL 5.4 HOUGH

186 Chapter 3: New IDL Routines

References

1. Gonzdez, R.C., and R.E. Woods. Digital Image Processing. Reading, MA:
Addison Wesley, 1992.

2. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

3. Toft, Peter. The Radon Transform: Theory and |mplementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

4. Weeks, Arthur. R. Fundamentals of Electronic Image Processing. New York:
SPIE Optical Engineering Press, 1996.

HOUGH What's New in IDL 5.4

Chapter 3: New IDL Routines 187
LAGUERRE

The LAGUERRE function returns the value of the associated Laguerre polynomial
L(X) . The associated Laguerre polynomials are solutions to the differential
equation:

xy"+(k+1-x)y'+ny = 0
with orthogonality constraint:

mn

o n+ k)!
[eI LA X = %6

Laguerre polynomials are used in quantum mechanics, for example, where the wave
function for the hydrogen atom is given by the Laguerre differential equation.

Thisroutine iswritten in the IDL language. Its source code can be found in the file
| aguerre. prointheli b subdirectory of the IDL distribution.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
| aguerre. prointheli b subdirectory of the IDL distribution.

Syntax
Result = LAGUERRE(X, N[, K] [, COEFFICIENTS=variable] [, /DOUBLE])
Return Value

This function returns a scalar or array with the same dimensions as X. If X is double-
precision or if the DOUBLE keyword is set, the result is double-precision complex,
otherwise the result is single-precision complex.

Arguments

X
The value(s) at which Lh(x) isevaluated. X can be either ascalar or an array.
N

A scalar integer, N = 0, specifying the order n of Lh(x) .If Nisof typefloat, it will be
truncated.

What's New in IDL 5.4 LAGUERRE

188 Chapter 3: New IDL Routines

K

A scalar, K = 0, specifying the order k of Lh(x) . If K is not specified, the default
K = 0 isused and the Laguerre polynomial, L(x), is returned.

Keywords

COEFFICIENTS

Set this keyword to a named variable that will contain the polynomial coefficientsin
the expansion C[0] + C[1]x + C[2]x% +

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Example

To compute the value of the Laguerre polynomial at the following X values:

;Define the paranetric X val ues:
X =[0.0, 0.2, 0.4, 0.6, 0.8, 1.0]

; Conput e the Laguerre pol ynom al of order N=2, K=1:
result = LAGUERRE(X, 2, 1)

;Print the result:
PRI NT, result

IDL prints:
3.00000 2.42000 1.88000 1.38000 0.920000 0.500000

Thisisthe exact solution vector to six-decimal accuracy.
See Also

LEGENDRE, SPHER_HARM

LAGUERRE What's New in IDL 5.4

Chapter 3: New IDL Routines 189
LEGENDRE

The LEGENDRE function returns the value of the associated L egendre polynomial
P, (x) The associated Legendre functions are solutions to the differential equation:

2
(1=x2)y" —2xy’ +[|(| +1)——1 }y 0
(1-x%)
with orthogonality constraints.
1 om n _ 2 (I+m)
I—l I:)I (X)PK(X)dX 2l +1 (| m)| 6Ik5mn

The Legendre polynomials are the solutions to the L egendre equation with m= 0. For
positive m, the associated L egendre functions can be written in terms of the Legendre
polynomials as:

PTx) = ()" A)™ L b
dx

Associated polynomials for negative m are related to positive m by:

P09 = (1) IRPT(x)

(T+ m)!

LEGENDRE is based on the routine plgndr described in section 6.8 of Numerical
Recipesin C: The Art of Scientific Computing (Second Edition), published by
Cambridge University Press, and is used by permission.

Syntax
Result = LEGENDRE(X, L [, M] [, /DOUBLE])
Return Value

If al arguments are scalar, the function returns ascalar. If all arguments are arrays,
the function matches up the corresponding elements of X, L, and M, returning an
array with the same dimensions as the smallest array. If one argument is a scalar and
the other arguments are arrays, the function uses the scalar value with each element

What's New in IDL 5.4 LEGENDRE

190 Chapter 3: New IDL Routines
of the arrays, and returns an array with the same dimensions as the smallest input
array.

If any of the arguments are double-precision or if the DOUBLE keyword is set, the
result is double-precision, otherwise the result is single-precision.

Arguments

X

The expression for which le(x) isevaluated. Valuesfor X must beintherange—1 <
X <1

L

Aninteger scalar or array, L = 0, specifying the order | of P|m(x) . If Lisof typefloat,
it will be truncated.

M

Aninteger scalar or array, —L < M < L, specifying the order m of le(x) .If Misnot
specified, then the default M = O is used and the Legendre polynomial, P,(X), is
returned. If M is of type float, it will be truncated.

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.
Examples

Example 1

Compute the value of the Legendre polynomial at the following X values:

Define the parametric X val ues:
X =1[-0.75 -0.5, -0.25, 0.25, 0.5, 0.75]

; Conmpute the Legendre polynom al of order L=2:
result = LEGENDRE(X, 2)

Print the result:
PRI NT, result

The result of thisis:

0. 343750 -0.125000 -0.406250 -0.406250 -0.125000 0.343750

LEGENDRE What's New in IDL 5.4

Chapter 3: New IDL Routines 191

Example 2

Compute the value of the associated Legendre polynomial at the same X values:

; Conpute the associated Legendre polynonm al of order L=2, M:1:
result = LEGENDRE(X, 2, 1)

Print the result:
PRI NT, result

IDL prints:
1.48824 1.29904 0.726184 -0.726184 -1.29904 -1.48824

Thisisthe exact solution vector to six-decimal accuracy.
See Also

SPHER_HARM, LAGUERRE

What's New in IDL 5.4 LEGENDRE

192

Chapter 3: New IDL Routines

MAKE_DLL

MAKE_DLL

The MAKE_DLL procedure builds a sharable library from C language code whichis
suitable for use by IDL’s dynamic linking features such as CALL_EXTERNAL,
LINKIMAGE, and dynamically loadable modules (DLMs). MAKE_DLL reducesthe
complexity of building sharable libraries by providing a stable cross-platform method
for the user to describe the desired library, and i ssuing the necessary operating system
commands to build the library.

Note
MAKE_DLL issupported under UNIX, VMS, and Microsoft Windows, but is not
available for the Macintosh.

Although MAKE_DLL isvery convenient, it is not intended for use as a general
purpose compiler. Instead, MAKE_DLL is specifically targeted to solving the most
common IDL dynamic linking problem: building a sharable library from C language
source files that are usable by IDL. Because of this, the following requirements

apply:

* You must have a C compiler installed on your system. It is easiest to use the
compiler used to build IDL, because MAKE_DLL already knows how to use
that compiler without any additional configuring. To determine which
compiler was used, query theIMAKE_DLL system variable with a print
statement such as the following:

PRI NT, ! MAKE_DLL. COVPI LER_NAME

« MAKE DLL only compiles programs written in the C language; it does not
understand Fortran, C++, or any other languages.

» MAKE_DLL providesonly the functionality necessary to build C code
intended to be linked with IDL. Not every possible option supported by the C
compiler or system linker is addressed, only those commonly needed by IDL-
related C code.

MAKE_DLL solvesthe most common IDL-centric problem of linking C code with
IDL. To do more than this or to use a different language requires a system-specific
building process (e.g. make files, projects, etc...).

What's New in IDL 5.4

Chapter 3: New IDL Routines 193

Syntax

MAKE_DLL, InputFiles[, OutputFil€], ExportedRoutineNames [, CC=string]

[, COMPILE_DIRECTORY =path] [, DLL_PATH=variabl€]

[, EXPORTED_DATA=string] [, EXTRA_CFLAGS=string]

[, EXTRA_LFLAGS=string] [, INPUT_DIRECTORY =path] [, LD=string]

[, /NOCLEANUP] [, OUTPUT_DIRECTORY =path] [, /SHOW_ALL_OUTPUT]
[, VERBOSE]

VM S-Only Keywords: [/VAX_FLOAT]
Arguments

InputFiles

A string (scalar or array) giving the names of the input C program files to be
compiled by MAKE_DLL. These names should not include any directory path
information or the . ¢ suffix, they are ssimply the base file names.

Theinput directory is specified using the INPUT_DIRECTORY keyword, and the. c
file suffix is assumed.

OutputFile

The base name of the resulting sharable library. This hame should not include any
directory path information or the sharable library suffix, which differs between
platforms (for example: . so, . a,. sl , . exe,.dl).

The output directory can be specified using the OUTPUT_DIRECTORY keyword.

If the OutputFile argument is omitted, the first name given by InputFileis used asthe
base name of output file.

ExportedRoutineNames

A string (scalar or array) specifying the names of the routines to be exported (i.e., are
visible for linking) from the resulting sharable library.

Keywords
CC

If present, atemplate string to use in generating the C compiler commands to compile
InputFiles. If CC is not specified, the value given by the IMAKE_DLL.CC system
variableis used by default. See the discussion of IMAKE_DLL for a description of
how to write the format string for CC.

What's New in IDL 5.4 MAKE_DLL

194

MAKE_DLL

Chapter 3: New IDL Routines

COMPILE_DIRECTORY

To build asharable library, MAKE_DLL requires a place to create the necessary
intermediate files and possibly the final library itself. If COMPILE_DIRECTORY is
specified, the directory specified is used. If COMPILE_DIRECTORY is not
specified, the directory given by theMAKE_DLL.COMPILE_DIRECTORY system
variableis used.

DLL_PATH

If present, the name of avariable to receive the complete file path for the newly
created sharable library. The location of the resulting sharable library depends on the
setting of the OUTPUT_DIRECTORY or COMPILE_DIRECTORY keywords as
well astheMAKE_DLL.COMPILE_DIRECTORY system variable, and different
platforms use different file suffixes to indicate sharable libraries. Use of the
DLL_PATH keyword makesit possible to determine theresulting file path inasimple
and portable manner.

EXPORTED_DATA

A string (scalar or array) containing the names of variables to be exported (i.e., are
visible for linking) from the resulting sharable library.

EXTRA_CFLAGS

If present, a string supplying extra options for the command used to execute the C
compiler to compile the files given by InputFiles. This keyword is frequently used to
specify header fileinclude directories. Thistext isinserted in place of the %X format
code in the compile string. See the discussion of the CC keyword and
IMAKE_DLL.CC system variable for more information.

EXTRA_LFLAGS

If present, a string supplying extra options for the command used to execute the
linker when combining the object files to produce the sharable library. This keyword
is frequently used to specify libraries to be included in the link, and isinserted in
place of the %X format code in the linker string. See the discussion of the LD
keyword and 'MAKE_DLL.LD system variable for more information.

INPUT_DIRECTORY

If present, the path to the directory containing the source C files listed in InputFiles.
If INPUT_DIRECTORY is not specified, the directory given by
COMPILE_DIRECTORY is assumed to contain thefiles.

What's New in IDL 5.4

Chapter 3: New IDL Routines 195

LD

If present, atemplate string to use when generating the linker command to generate
the resulting sharable library. If LD is not specified, the value given by the
IMAKE_DLL.LD system variableis used by default. See the discussion of
IMAKE_DLL for adescription of how to write the format string for LD.

NOCLEANUP
To produce asharable library, MAKE_DLL produces several intermediate files:

1. A shell script (UNIX), command file (VMS), or batch file (Windows) that is
then executed via SPAWN to build the library.

2. Alinker optionsfile. Thisfileisused to control the linker. MAKE_DLL usesit
to cause the routines given by the ExportedRoutineNames argument (and
EXPORTED_DATA keyword) to be exported from the resulting sharable
library. The genera platform terminology is shown below.

Platform Linker Options File Terminology
UNIX export file, or linker map file
VMS linker optionsfile (. OPT)
Windows a. DEF file

Table 3-2: Platform Terminology for Linker Options File

3. Object files, resulting from compiling the source C files given by the
InputFiles argument.

4. A log filethat captures the output from executing the script, and which can be
used for debugging in case of error.

By default, MAKE_DLL deletesal of these intermediate files once the sharable
library has been successfully built. Setting the NOCLEANUP keyword prevents
MAKE_DLL from removing them.

Note
Set the NOCLEANUP keyword (possibly in conjunction with VERBOSE) for
trouble shooting, or to read the files for additional information on how
MAKE_DLL works.

What's New in IDL 5.4 MAKE_DLL

196

Chapter 3: New IDL Routines

OUTPUT_DIRECTORY

By default, MAKE_DLL creates the resulting sharable library in the compile
directory specified by the COMPILE_DIRECTORY keyword or the
IMAKE_DLL.COMPILE_DIRECTORY system variable. The
OUTPUT_DIRECTORY keyword can be used to override this and explicitly specify
where the library file should go.

SHOW_ALL_OUTPUT

MAKE_DLL normally produces no output unless an error prevents successful
building of the sharable library. Set SHOW_ALL_OUTPUT to see al output
produced by the spawned process building the library.

VERBOSE

If set, VERBOSE causes MAKE DLL toissueinformational messages asit carries
out the task of building the sharable library. These messages include information on
the intermediate files created to build the library and how they are used.

VMS-Only Keywords

Thiskeyword isfor VMS platforms only, and isignored on all other platforms.
VAX_FLOAT

If set, specifies the sharable library to be compiled for VAX F (single) or D (double)
floating point formats. The default is to use the |EEE format used by IDL.

IMAKE_DLL System Variable

MAKE_DLL

The MAKE_DLL procedure and CALL_EXTERNAL function's AUTO_GLUE
keyword use the standard system C compiler and linker to generate sharable libraries
that can be used by IDL in various contexts (CALL_EXTERNAL, DLMs,
LINKIMAGE). Thereisagreat deal of variation possible in the use of these tools
between different platforms, operating system versions, and compiler releases. The
IMAKE_DLL system variableisused to configure how IDL usesthem for the current
platform.

The MAKE_DLL structure is defined as follows:
{ 'MAKE_DLL, COWPILE DI RECTORY:’’, COWPILER NAME:'', CC.’’', LD’}

The meaning of the fields of IMAKE_DLL are given in Table D-2. When expanding
IMAKE DLL.CCand'MAKE DLL.LD, IDL substitutestext in place of the

What's New in IDL 5.4

Chapter 3: New IDL Routines

197

PRINTF style codes described in the following table. These codes are case-
insensitive, and can be either upper or lower case.

Note

It is possible to use C compilers other than the one assumed by RSl in
IMAKE_DLL to build sharable libraries. To do so, you can alter the contents of
IMAKE_DLL or usethe CC and/or LD keyword to MAKE_DLL and
CALL_EXTERNAL. Please understand that RSI cannot and does not maintain a
list of all possible compilers and the necessary compiler options. This information
isavailable in your compiler and system documentation. It is the programmers
responsibility to understand the rules for their chosen compiler.

Field

Meaning

COMPILE_DIRECTORY

IDL requires a place to create the intermediate files
necessary to build a sharable library, and possibly the
final library itself. Unlesstold to use an explicit
directory, it uses the directory given by the
COMPILE _DIRECTORY field of IMAKE DLL. If
the IDL_MAKE_DLL_COMPILE_DIRECTORY
environment variable is set, IDL usesitsvaueto
initialize the COMPILE_DIRECTORY field.
Otherwise, IDL supplies a standard location.

Note - Notethat if the directory given by
IMAKE_DLL.COMPILE_DIRECTORY does not
exist when IDL needsit, IDL automatically createsit
for you.

COMPILER_NAME

A string containing the name of the C compiler used
by RSI to build the currently running IDL. Thisfield
isnot used by IDL, and exists solely for informational
purposes and to help the end user decide which C
compiler to install on their system.

Table 3-3: Meaning of IMAKE_DLL fields

What's New in IDL 5.4

MAKE_DLL

198

Chapter 3: New IDL Routines

Field Meaning
CcC A string used by IDL as atemplate to construct the
command for using the C compiler. This template
uses PRINTF style substitution codes, as described in
the following table.
LD A string used by IDL as atemplate to construct the

command for using the linker. This template uses
PRINTF style substitution codes, as described in the
following table.

Table 3-3: Meaning of IMAKE_DLL fields (Continued)

The following table describes the substitution codes for the CC and LD fields:

Code

Meaning

%B %b

The base name of a C file to compile. For example, if the C
fileismoose. c, then %B substitutes noose.

%C %c

The name of the Cfile.

%E %e

The name of the linker optionsfile. Thisfile, whichis
automatically generated by IDL as needed, is used to control
the linker. Under UNIX, the system documentation refersto
thisas an export file, or alinker map file. VM S callsit alinker
optionsfile (. OPT). Microsoft Windows calsit a. DEF file.

%F %of

A floating point switch to C compiler. Thisisonly meaningful
under VMS, and corresponds to the VAX_FLOAT keyword to
MAKE_DLL and CALL_EXTERNAL.

%L %l

The name of the resulting sharable library. IDL constructs this
name by using the base name (%B) and adding the appropriate
suffix for the current platform (. dl | , . so, . sl , . exe, ...).

%0 %0

An object file name. IDL constructs this name by using the
base name (%B) and adding the appropriate suffix for the
current platform (. o, . obj).

Table 3-4: Description of CC and LD Field Codes

MAKE_DLL

What's New in IDL 5.4

Chapter 3: New IDL Routines 199

Code Meaning

%X %X When expanding /MAKE_DLL.CC, any text supplied viathe
EXTRA_CFLAGS keyword to MAKE_DLL or
CALL_EXTERNAL isinserted in place of %X. IDL does not
interpret thistext. It isthe users responsibility to ensure that it
is meaningful in the command. When expanding
IMAKE_DLL.LD, thetext from the EXTRA_LFLAGS
keyword is substituted. The primary use for this codeisto
include necessary header include directories and link libraries.

%% Replaced with asingle % character.

Table 3-4: Description of CC and LD Field Codes (Continued)
Example 1

Testmodule DLM

The IDL distribution contains an example of asimple DLM (dynamically loadable
module) in the ext er nal / dl msubdirectory. This example consists of asingle C
source file, and the desired sharable library exports asingle function called
IDL_Load. Thefollowing MAKE_DLL statement builds this sharable library,
leaving the resulting file in the directory given by
IMAKE_DLL.COMPILE_DIRECTORY:

Locate the source file:

INDIR = FI LEPATH('’, SUBDI RECTORY=['external’, 'dlini])
Build the sharable library:
MAKE_DLL, 'testnodule’, 'IDL_Load , |NPUT_DI RECTORY=I NDI R
Example 2
Using GCC

IDL isbuilt with the standard vendor-supported C compiler in order to get maximum
integration with the target system. MAKE_DLL assumes that you have the same
compiler installed on your system and its defaults are targeted to use it. To use other
compilers, you tell MAKE_DLL how to use them.

For example, many IDL users have the gcc compiler installed on their systems. This
example (tested under 32-bit Solaris 7 using gcc 2.95.2) shows how to use gcc to
build the testmodule sharable library from the previous example:

; W need the include directory for the I DL export.h header

What's New in IDL 5.4 MAKE_DLL

200

MAKE_DLL

Chapter 3: New IDL Routines

; file. One way to get this is to extract it fromthe

; 'MAKE_DLL system variabl e using the STREGEX function

| NCLUDE=STREGEX(! MAKE_DLL. CC, '-I[" 1+, [EXTRACT)
Locate the source file

INDIR = FI LEPATH('', SUBDI RECTORY=['external', 'dim])

; Build the sharable library, using the CC keyword to specify gcc:

MAKE_DLL, 'testnodule', 'IDL_Load', |NPUT_DI RECTORY=INDI R, $
CC="gcc -c -fPIC "'+ INCLUDE + '%C -0 %O

What's New in IDL 5.4

Chapter 3: New IDL Routines 201

MAP_2POINTS

The MAP_2POINTS function returns parameters such as distance, azimuth, and path
relating to the great circle or rhumb line connecting two points on a sphere.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
map_2poi nts. pro inthel i b subdirectory of the IDL distribution.

Syntax

Result = MAP_2POINTS(lon0, lat0, lond, latl [, DPATH=value |, /IMETERS |
,IMILES |, NPATH=integer{ 2 or greater} | , /PARAMETERS |, RADIUS=value]
[, /RADIANS] [, /RHUMB])

Return Value

Thisfunction returns atwo-element vector containing the distance and azimuth of the
great circle or rhumb line connecting the two points, PO to P1, in the specified
angular units, unless one or more of the keywords NPATH, DPATH, METERS,
MILES, PARAMETERS, or RADIUS is specified. See the keyword descriptions for
the return value associated with each of these keywords.

If MILES, METERS, or RADIUS s not set, distances are angular distance, from 0 to

180 degrees (or 0 to Pl if the RADIANS keyword is set). Azimuth is measured in
degrees or radians, east of north.

Arguments
LonO, LatO
Longitude and latitude of the first point, PO.
Lonl, Latl
Longitude and latitude of the second point, P1.

Keywords

DPATH

Set this keyword to a value specifying the maximum angular distance between the
points on the path in the prevalent units, degrees or radians.

What's New in IDL 5.4 MAP_2POINTS

202

Chapter 3: New IDL Routines

METERS

Set this keyword to return the distance between the two points in meters, calcul ated
using the Clarke 1866 equatoria radius of the earth.

MILES

Set this keyword to return the distance between the two points in miles, calculated
using the Clarke 1866 equatoria radius of the earth.

NPATH

Set this keyword to a value specifying the number of pointsto return. If this keyword
isset, the function returns a (2, NPATH) array containing the longitude/latitude of the
points on the great circle or rhumb line connecting PO and P1. For agreat circle, the
points will be evenly spaced in distance, while for arhumb line, the points will be
evenly spaced in longitude.

Note
This keyword must be set to an integer of 2 or greater.

PARAMETERS

Set this keyword to return the parameters determining the great circle connecting the
two points, [sin(c), cos(c), sin(az), cos(az)], where c is the great circle angular
distance, and az is the azimuth of the great circle at PO, in degrees east of north.

RADIANS

Set this keyword if inputs and angular outputs are to be specified in radians. The
default is degrees.

RADIUS

Set this keyword to a val ue specifying the radius of the sphere to be used to calculate
the distance between the two points. If this keyword is specified, the function returns
the distance between the two points calculated using the given radius.

RHUMB

Set this keyword to return the distance and azimuth of the rhumb line connecting the
two points, PO to P1. The default is to return the distance and azimuth of the great
circle connecting the two points. A rhumb lineisthe line of constant direction
connecting two points.

MAP_2POINTS What's New in IDL 5.4

Chapter 3: New IDL Routines 203

Examples

The following examples use the geocoordinates of two points, Boulder and London:

B
L

[-105.19, 40.02] ; Longi tude, latitude in degrees.
[-0.07, 51. 30]

Example 1

Print the angular distance and azimuth, from B, of the great circle connecting the two
points:

PRI NT, MAP_2POI NTS(B[O0], B[1], L[O], L[1])

IDL prints67. 854333 40. 667833

Example 2

Print the angular distance and course (azimuth), connecting the two points:
PRI NT, MAP_2POI NTS(B[0], B[1], L[0], L[1],/RHUVB)

IDL prints73. 966283 81. 228057

Example 3

Print the distance in miles between the two points:
PRI NT, MAP_2POI NTS(B[O0], B[1], L[0], L[1],/M LES)

IDL prints4693. 5845

Example 4

Print the distance in miles along the rhumb line connecting the two points:
PRI NT, MAP_2POI NTS(B[0], B[1], L[0], L[1], /MLES, /RHUMB)

IDL prints5116. 3571

Example 5

Display a map containing the two points, and annotate the map with both the great
circle and the rhumb line path between the points, drawn at one degree increments:

MAP_SET, /MOLLVEIDE, 40,-50, /GRI D, SCALE=75e6, / CONTI NENTS
PLOTS, MAP_2POI NTS(B[O], B[1], L[O], L[1],/RHUVB, DPATH=1)
PLOTS, MAP_2POI NTS(B[0], B[1], L[O], L[1], DPATH=1)

What's New in IDL 5.4 MAP_2POINTS

204 Chapter 3: New IDL Routines

This displays the following map:

Figure 3-4: Map annotated with great circle and rhumb line path between
Boulder and London, drawn at one degree increments.

See Also

MAP_SET

MAP_2POINTS What's New in IDL 5.4

Chapter 3: New IDL Routines 205
MATRIX_MULTIPLY

The MATRIX_MULTIPLY function calculates the IDL # operator of two (possibly
transposed) arrays. The transpose operation (if desired) is done simultaneously with
the multiplication, thus conserving memory and increasing the speed of the

operation. If the arrays are not transposed, then MATRIX_MULTIPLY isequivalent
to using the # operator.

Syntax

Result = MATRIX_MULTIPLY (A, B[, /ATRANSPOSE] [, /BTRANSPOSE])
Return Value

The type for the result depends upon the input type. For byte or integer arrays, the
result has the type of the next-larger integer type that could contain the result (for
example, byte, integer, or long input returns type long integer). For floating-point, the
result has the same type as the input.

For the case of no transpose, the resulting array has the same number of columns as
thefirst array and the same number of rows as the second array. The second array
must have the same number of columns as the first array has rows.

Note
If A and B arguments are vectors, then C = MATRIX_MULTIPLY (A, B) isa

matrix with Cj; = AiB;. Mathematically, thisis equivalent to the outer product,
usually denoted by AB.

Arguments

A

The left operand for the matrix multiplication. Dimensions higher than two are
ignored.

B

The right operand for the matrix multiplication. Dimensions higher than two are
ignored.

What's New in IDL 5.4 MATRIX_MULTIPLY

206 Chapter 3: New IDL Routines

Keywords

ATRANSPOSE
Set this keyword to multiply using the transpose of A.
BTRANSPOSE
Set this keyword to multiply using the transpose of B.

The # Operator vs. MATRIX_MULTIPLY

The following table illustrates how various operations are performed using the #
operator versus the MATRIX_MULTIPLY function:

Operator Function
A#B MATRIX_MULTIPLY (A, B)
transpose(A) #B MATRIX_MULTIPLY (A, B, /ATRANSPOSE)
A # transpose(B) MATRIX_MULTIPLY (A, B, /BTRANSPOSE)
transpose(A) # transpose(B) | MATRIX_MULTIPLY (A, B, /ATRANSPOSE,
/IBTRANSPOSE)

Table 3-5: The # Operator vs. MATRIX_MULTIPLY

Note
MATRIX_MULTIPLY can also be used in place of the ## operator. For example,
A ## B isequivaent to MATRIX_MULTIPLY (B, A), and A ## TRANSPOSE(B) is
equivalent to MATRIX_MULTIPLY (B, A, /ATRANSPOSE).

See Also

“Multiplying Arrays’ in Chapter 16 of Using IDL

MATRIX_MULTIPLY What's New in IDL 5.4

Chapter 3: New IDL Routines 207
MEMORY

The MEMORY function returns information on the amount of dynamic memory
currently in use by the IDL session if no keywords are set. If akeyword is set,
MEMORY returns the specified quantity.

Syntax

Result = MEMORY ([, /CURRENT |, /HIGHWATER |, /NUM_ALLOC |
,INUM_FREE |, /STRUCTURE] [, /L64])

Return Value

Thereturn value is a vector that is always of integer type. The following table
describes the information returned if no keywords are set:

Element Contents
Result[0] Amount of dynamic memory (in bytes) currently in use by the
IDL session.
Result[1] The number of times IDL has made a memory allocation request

from the underlying system.

Result[2] The number of times IDL has made arequest to free memory
from the underlying system.

Result[3] High water mark: The maximum amount of dynamic memory
used since the last time the MEMORY function or
HELP, /MEMORY procedure was called.

Table 3-6: MEMORY Function Return Values
Arguments
None.
Keywords
The following keywords determine the return value of the MEMORY function.

Except for L64, al of the keywords are mutually exclusive — specify at most one of
the following.

What's New in IDL 5.4 MEMORY

208

MEMORY

Chapter 3: New IDL Routines

CURRENT

Set this keyword to return the amount of dynamic memory (in bytes) currently in use
by the IDL session.

HIGHWATER

Set this keyword to return the maximum amount of dynamic memory used since the
last time the MEMORY function or HELR/MEMORY procedure was called. This
can be used to determine maximum memory use of a code sequence as shown in the
example below.

L64

By default, the result of MEMORY is 32-bit integer when possible, and 64-bit integer
if the size of the returned values requiresit. Set L64 to force 64-bit integers to be
returned in all cases.

Note
Only 64-bit versions of IDL are capable of using enough memory to require 64-bit
MEMORY output. Check the value of 'VERSION.MEMORY_BITSto seeif your
IDL is 64-bit or not.

NUM_ALLOC

Returns the number of times IDL has requested dynamic memory from the
underlying system.

NUM_FREE

Returns the number of times IDL has returned dynamic memory to the underlying
system.

STRUCTURE

Set this keyword to return all available information about Expression in a structure.
Theresult will bean IDL_MEMORY (32-hit) structure when possible, and an
IDL_MEMORY 64 structure otherwise. Set L64 to force an IDL_MEMORY 64
structure to be returned in all cases.

What's New in IDL 5.4

Chapter 3: New IDL Routines 209

The following are descriptions of the fieldsin the returned structure:

Field Description

CURRENT Current dynamic memory in use.

NUM_ALLOC Number of calls to allocate memory.

NUM_FREE Number of callsto free memory.

HIGHWATER Maximum dynamic memory used since last call for this
information.

Table 3-7: STRUCTURE Field Descriptions
Example

To determine how much dynamic memory is required to execute a sequence of IDL
code:

Get current allocation and reset the high water nark:
start_mem = MEMORY(/ CURRENT)

; Arbitrary code goes here.

PRI NT, 'Menmory required: ', MEMORY(/H GHWATER) - start_nem

The MEMORY function can also be used in conjunction with DIALOG_MESSAGE
asfollows:

Get current dymanic nenory in use:
mem = MEMORY(/ CURRENT)
Prepare di al og nessage:
message = 'Current anount of dynanmic menory used is '
sentence = nmessage + STRTRI M nmem 2)+' bytes.'
Di splay the di al og message contai ni ng menory usage statenent:
status = DI ALOG MESSAGE (sentence, /| NFORVATI ON)

See Also

HELP

What's New in IDL 5.4 MEMORY

210 Chapter 3: New IDL Routines
RADON

The RADON function implements the Radon transform, used to detect features
within atwo-dimensional image. Thisfunction can be used to return either the Radon
transform, which transforms lines through an image to points in the Radon domain,
or the Radon backprojection, where each point in the Radon domain istransformed to
astraight linein the image.

Syntax

Radon Transform:

Result = RADON(Array [, /DOUBLE] [, DRHO=scalar] [, DX=scalar]

[, DY=scalar] [, /GRAY] [, /LINEAR] [, NRHO=scalar] [, NTHETA=scalar]
[, RHO=variable] [, RMIN=scalar] [, THETA=variable] [, XMIN=scalar]

[, YMIN=scalar])

Radon Backpr oj ection:

Result = RADON(Array, /BACKPROJECT, RHO=variable, THETA=variable
[, /DOUBLE] [, DX=scalar] [, DY=scalar] [, /LINEAR] [, NX=scalar]
[, NY=scalar] [, XMIN=scalar] [, YMIN=scalar])

Return Value

The result of thisfunction is atwo-dimensional floating-point array, or a complex
array if the input image is complex. If Array is double-precision, or if the DOUBLE
keyword is set, the result is double-precision, otherwise, the result is single-precision.

Radon Transform Theory

The Radon transform is used to detect features within an image. Given afunction
A(X, y), the Radon transform is defined as:

R(6, p) :J’fwA(p cosb-ssing, p sSinB + scosb)ds

RADON What's New in IDL 5.4

Chapter 3: New IDL Routines 211

This equation describes the integral along aline s through the image, where p isthe
distance of the line from the origin and 6 is the angle from the horizontal.

P A
& R(8.0)

w2 e

Radon Domain

Image Domain

Figure 3-5: The Radon Transform
In medical imaging, each point R(8, p) is called aray-sum, while the resulting image
is called a shadowgram. An image can be reconstructed from its ray-sums using the
backprojection operator:

B(x,) = IgR(e, xCcos6 + ysinB)do

where the output, B(X, y), isan image of A(X, y) blurred by the Radon transform.

How IDL Implements the Radon Transform

To avoid the use of atwo-dimensional interpolation and decrease the interpolation
errors, the Radon transform equation is rotated by 0, and the interpolation is then
done aong theline s. The transform is divided into two regions, one for nearly-
horizontal lines (45° < B < 135°), and the other for stegper lines

(6 <45°; 135°< B < 1809, where 8 is assumed to lie on the interval [0°,180°].

What's New in IDL 5.4 RADON

212 Chapter 3: New IDL Routines

For nearest-neighbor interpolation (the default), the discrete transform formulafor an
image A(m, n) [m=0, ..,M-1,n=0, ..., N-1] is.

0
%lgAX ZA(m[am+b]) |sin6|>§2
R(®,p) = O A 5
E |sing| < 22
0| 2

where brackets [[Jlindicate rounding to the nearest integer, and the slope and offsets

are given by:
_ _DxcosB b= P — Xin€0S0 — ¥, SING
Ay sin® Aysing
g =1 b = P = XminCOSO — Yi, SING
a Axcos0

For linear interpolation, the transformis:

AX
6|

[2

S Z(l —w)A(m|am+b]) +wA(m[am+b|+1) |sinf >
R®.p) =

an
A fZ

<5 Z(l w)A(Lan+b' |n)+wA(lan+b'|+1n) [sinf <%

DDDDDDD

where the slope and offsets are the same as above, and [Tindicates flooring to the
nearest lower integer. The weighting wis given by the difference between am+ b and
itsfloored value, or between a’'n + b’ and its floored value.

How IDL Implements the Radon Backprojection

For the backprojection transform, the discrete formulafor nearest-neighbor
interpolation is:

B(mn) = A8 R(®,[p])
t

RADON What's New in IDL 5.4

Chapter 3: New IDL Routines 213

with the nearest-neighbor for p given by:

p = {(MAX+ X ,) COSB, + (NAY + Y,) SINO,—P i FAP -

For backprojection with linear interpolation:

B(mn) =A8% (1-w)R(®,.LpJ) + WR(BLp]+1)
t
w=p-[p]

and p isthe same as in the nearest-neighbor.
Arguments

Array
The two-dimensional array of size M by N to be transformed.

Keywords

BACKPROJECT

If set, the backprojection is computed, otherwise, the forward transform is computed.

Note
The Radon backprojection does not return the original image. Instead, it returns an
image blurred by the Radon transform. Because the Radon transform is not one-to-
one, multiple (x, y) points are mapped to asingle (6, p).

DOUBLE

Set this keyword to force the computation to be done using double-precision
arithmetic.

DRHO

Set this keyword equal to a scalar specifying the spacing between p coordinates,
expressed in the same units as Array. The default is one-half of the diagonal distance
between pixels, 0.5[(DX2+ DY2)]Y2 . Smaller values produce finer resolution, and
are useful for zooming in on interesting features. Larger values may result in

What's New in IDL 5.4 RADON

214

RADON

Chapter 3: New IDL Routines

undersampling, and are not recommended. If BACKPROJECT is specified, this
keyword isignored.

DX

Set this keyword equal to a scalar specifying the spacing between the horizontal (x)
coordinates. The default is 1.0.

DY

Set this keyword equal to a scalar specifying the spacing between the vertical (y)
coordinates. The default is 1.0.

GRAY

Set or omit this keyword to perform aweighted Radon transform, with the weighting
given by the pixel values. If GRAY is explicitly set to zero, theimage istreated asa
binary image with al nonzero pixels considered as 1.

LINEAR

Set this keyword to use linear interpolation rather than the default nearest-neighbor
sampling. Results are more accurate but slower when linear interpolation is used.

NRHO

Set this keyword equal to ascalar specifying the number of p coordinatesto use. The
default is2 CEIL([MAX(x2 +y?)]¥2 / DRHO) + 1. If BACKPROJECT is specified,
this keyword is ignored.

NTHETA

Set this keyword equal to a scalar specifying the number of 6 coordinates to use over
theinterval [0, T. The default is CEIL (1t [(M2 + N2)/2]¥2). Larger values produce
smoother results, and are useful for filtering before backprojection. Smaller values
result in broken linesin the transform, and are not recommended. If BACKPROJECT
is specified, this keyword is ignored.

NX

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of horizontal coordinates in the output Result. The default is

FLOOR(2 MAX(IRHO|)(DX2 + DY?2)Y2 + 1). For the forward transform this
keyword isignored.

What's New in IDL 5.4

Chapter 3: New IDL Routines 215

NY

If BACKPROJECT is specified, set this keyword equal to a scalar specifying the
number of vertical coordinatesin the output Result. The default is

FLOOR(2 MAX(JRHO|)(DX? + DY?)™Y2 + 1). For the forward transform, this
keyword isignored.

RHO

For the forward transform, set this keyword to a named variable that will contain the
radial (p) coordinates. If BACKPROJECT is specified, this keyword must contain the
p coordinates of the input Array. The p coordinates should be evenly spaced and in
increasing order.

RMIN

Set this keyword equal to ascalar specifying the minimum p coordinate to use for the
forward transform. The default is—0.5(NRHO — 1) DRHO. If BACKPROJECT is
specified, this keyword isignored.

THETA

For the forward transform, set this keyword to a named variable containing a vector
of angular (B) coordinates to use for the transform. If NTHETA is specified instead,
and THETA is set to a named variable, on exit THETA will contain the 8
coordinates. If BACKPROJECT is specified, this keyword must contain the 6
coordinates of the input Array.

XMIN

Set this keyword equal to a scalar specifying the x-coordinate of the lower-left corner
of theinput Array. The default is— (M—1)/2, where Array isan M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the x-
coordinate of the lower-left corner of the Result. In this case the default is

-DX (NX-1)/2.

YMIN

Set this keyword equal to ascalar specifying the y-coordinate of the lower-left corner
of the input Array. The default is— (N-1)/2, where Array isan M by N array. If
BACKPROJECT is specified, set this keyword equal to a scalar specifying the y-

coordinate of the lower-left corner of the Result. In this case, the default is
-DY (NY-1)/2.

What's New in IDL 5.4 RADON

216

Example

RADON

Chapter 3: New IDL Routines

This example displays the Radon transform and the Radon backprojection:
PRO radon_exanpl e

DEVI CE, DECOVWPOSED=0

;Create an image with a ring plus random noi se:
X = (LI NDGEN(128,128) MID 128) - 63.5

y = (LI NDGEN(128,128)/128) - 63.5

radi us = SQRT(x"2 + y"2)

array = (radius GT 40) AND (radius LT 50)

array = array + RANDOMJ seed, 128, 128)

; Create display wi ndow, set graphics properties:
W NDOW XSI ZE=440, YSI ZE=700, TI TLE=' Radon Exanpl e’
I P. BACKGROUND = 255 ; white

IP.COLOR = 0 ; bl ack

I P. FONT=2

ERASE

XYQUTS, .05, .94, 'Ring and Random Pi xel s', / NORVMAL
; Display the inmage. 255b changes bl ack values to white:
TVSCL, 255b - array, .05, .75, /NORVAL

; Cal cul ate and display the Radon transform
XYQUTS, .05, .70, 'Radon Transform , /NORVAL
result = RADON(array, RHO=rho, THETA=t heta)
TVSCL, 255b - result, .08, .32, /NORVAL
PLOT, theta, rho, /NODATA, /NCERASE, $

POSI TION=[0. 08,0.32, 1, 0.68], $

XSTYLE=9, YSTYLE=9, XTI TLE=' Theta', YTITLE='R

;For sinplicity in this exanple, renove everything except

;the two stripes. A better (and nore conplicated) nethod woul d
;be to choose a threshold for the result at each val ue of theta,
; perhaps based on the average of the result over the theta

;. di mensi on.

result[*,0:55] =0

result[*,73:181] =0

result[*,199:*] =0

; Find the Radon backprojection and display the output:

XYQUTS, .05, .26, 'Radon Backprojection', /NORVAL

backproject = RADON(result, /BACKPRQIECT, RHO=rho, THETA=t het a)
TVSCL, 255b - backproject, .05, .07, /NORVAL

END

What's New in IDL 5.4

Chapter 3: New IDL Routines 217

The following figure displays the program output. The top image is an image of a
ring and random pixels, or noise. The center image is the Radon transform, and
displays the line integral s through the image. The bottom image is the Radon
backprojection, after filtering all noise except for the two strong horizontal stripesin
the middle image.

Ring and Random Pixels

Radon Transform

2.0 2.5 3.0

0.0 0.5 1.0

1.5
Theta
Radon Backprojection

Figure 3-6: Radon Example - Original image (top), Radon transform (center), and
backprojection of the altered Radon transform (bottom).

See Also
HOUGH, VOXEL_PROJ
References

1. Herman, Gabor T. Image Reconstruction from Projections. New York:
Academic Press, 1980.

2. Hiriyannaiah, H. P. X-ray computed tomography for medical imaging. |EEE
Signal Processing Magazine, March 1997: 42-58.

What's New in IDL 5.4 RADON

218 Chapter 3: New IDL Routines

3. Jain, Anil K. Fundamentals of Digital Image Processing. Englewood Cliffs,
NJ: Prentice-Hall, 1989.

4. Toft, Peter. The Radon Transform: Theory and I mplementation. Denmark:
Technical University; 1996. Ph.D. Thesis.

RADON What's New in IDL 5.4

Chapter 3: New IDL Routines 219
SAVGOL

The SAVGOL function returns the coefficients of a Savitzky-Golay smoothing filter,
which can then be applied using the CONVOL function. The Savitzky-Golay
smoothing filter, also known as least squares or DISPO (digital smoothing
polynomial), can be used to smooth a noisy signal.

Thefilter is defined as a weighted moving average with weighting given asa
polynomial of a certain degree. The returned coefficients, when applied to asignal,
perform a polynomial least-squares fit within the filter window. This polynomial is
designed to preserve higher moments within the data and reduce the bias introduced
by the filter. The filter can use any number of points for this weighted average.

Thisfilter works especially well when the typical peaks of the signal are narrow. The
heights and widths of the curves are generally preserved.

Tip
You can use thisfunction in conjunction with the CONVOL function for smoothing
and optionally for numeric differentiation.

Thisroutineiswritten in the IDL language. Its source code can be found in thefile
savgol . prointhel i b subdirectory of the IDL distribution.

SAVGOL is based on the Savitzky-Golay Smoothing Filters described in section
14.8 of Numerical Recipesin C: The Art of Scientific Computing (Second Edition),
published by Cambridge University Press, and is used by permission.

Syntax
Result = SAVGOL (Nleft, Nright, Order, Degree [, /IDOUBLE])
Return Value

This function returns an array of floating-point numbers that are the coefficients of
the smoothing filter.

Arguments

Nleft

An integer specifying the number of data points to the left of each point to includein
the filter.

What's New in IDL 5.4 SAVGOL

220

SAVGOL

Chapter 3: New IDL Routines

Nright

An integer specifying the number of data points to the right of each point to include
in thefilter.

Note
Larger values of Nleft and Nright produce a smoother result at the expense of
flattening sharp peaks.

Order

An integer specifying the order of the derivative desired. For smoothing, use order O.
To find the smoothed first derivative of the signal, use order 1, for the second
derivative, use order 2, etc.

Note
Order must be less than or equal to the value specified for Degree.

Degree

An integer specifying the degree of smoothing polynomial. Typical valuesare 2 to 4.
Lower values for Degree will produce smoother results but may introduce bias,
higher values for Degree will reduce the filter bias, but may “over fit” the data and
give anoisier result.

Note
Degree must be less than the filter width (Nleft + Nright + 1).

Keywords

DOUBLE

Set this keyword to force the computation to be done in double-precision arithmetic.

Tip
The DOUBLE keyword is recommended for Degree greater than 9.

What's New in IDL 5.4

Chapter 3: New IDL Routines 221

Example

The following example creates a noisy 400-point vector with 4 Gaussian peaks of
decreasing width. It then plots the original vector, the vector smoothed with a 33-
point Boxcar smoother (the SMOQOTH function), and the vector smoothed with 33-
point wide Savitzky-Golay filter of degree 4. The bottom plot shows the first
derivative of the noisy signal and the first derivative using the Savitzky-Golay filter
of degree 4:

n = 401 ; nunber of points

np = 4 ; nunber of peaks

; Formthe baseline:

y = REPLI CATE(0.5, n)

; Index the array:

X = FI NDGEN(n)
Add each Gaussi an peak:

FOR i =0, np-1 DO BEG N
c = (i + 0.5) * FLOAT(n)/np ; Center of peak
peak = -(3 * (x-c¢) / (75. / 1.5 ~i))"2
; Add Gaussian. Cutoff of -50 avoids underflow errors for
; tiny exponentials:
y =y + EXP(peak>(-50))

ENDFOR

; Add noi se:

yl =y + 0.10 * RANDOWN(-121147, n)

IP. MULTI =[0, 1, 3]

; Boxcar snoothing wi dth 33:
PLOT, x, yl, TITLE='Signal +Noi se; Smooth (w dth33)'
OPLOT, SMOOTH(y1, 33, /EDGE_TRUNCATE), TH CK=3

; Savitzky-Golay with 33, 4th degree pol ynom al :

savgol Filter = SAVGOL(16, 16, 0, 4)

PLOT, x, yl1, TITLE=" Savitzky-Golay (w dth 33, 4th degree)'
OPLOT, x, CONVOL(yl, savgol Filter, /EDGE_TRUNCATE), THI CK=3

; Savitzky-Golay width 33, 4th degree, 1st derivative:
savgol Filter = SAVGOL(16, 16, 1, 4)
PLOT, x, DERIV(yl), YRANGE=[-0.2, 0.2], TITLE=$
"First Derivative: Savitzky-Golay(wi dth 33, 4th degree, order 1)'
OPLOT, x, CONVOL(yl, savgol Filter, /EDGE_TRUNCATE), THI CK=3

The following is the resulting plot. Notice how the Savitzky-Golay filter preserves
the high peaks but does not do as much smoothing on the flatter regions. Note also

What's New in IDL 5.4 SAVGOL

222 Chapter 3: New IDL Routines

that the Savitzky-Golay filter is able to construct a good approximation of the first
derivative.

Signal+Noise; Smooth [width33)

1 1 | |
0 100 200 300 400

0.20 First Derivative: Savitzky-Golay[width 33, 4th degree, order 1)

0.10

0.00 il1 i FM“ h lll | 1| ||” J||I||i |J|r|ll['xr“' i]Ill‘l |||I. ’ I .ll.”rl"ll'l

-0.10 H f ‘
-0.20

1 1 | |
0 100 200 300 400

Figure 3-7: SAVGOL Example

See Also

CONVOL, DIGITAL_FILTER, SMOOTH

SAVGOL What's New in IDL 5.4

Chapter 3: New IDL Routines 223
SOCKET

The SOCKET procedure, supported on UNIX and Microsoft Windows platforms,
opens a client-side TCP/IP Internet socket as an IDL file unit. Such files can be used
in the standard manner with any of IDL’s Input/Output routines.

Tip
RSI recommends that you don’t use the EOF procedure as away to check to seeif a
socket is empty. It is recommended that you structure your communication across
the socket so that using EOF is not necessary to know when the communication is
complete.

Syntax

SOCKET, Unit, Host, Port [, CONNECT_TIMEOUT=valug] [, ERROR=variable]
[,/GET_LUN] [, /RAWIQ] [, READ_TIMEOUT=value] [, /'SWAP_ENDIAN]
[,/'SWAP_IF_BIG_ENDIAN] [, /SWAP_IF_LITTLE_ENDIAN] [, WIDTH=value]
[, WRITE_TIMEOUT=value]

UNIX-Only Keywords: [, /STDIO]
Arguments

Unit

The unit number to associate with the opened socket.

Host

The name of the host to which the socket is connected. This can be either a standard
Internet host name (e.g. f t p. Resear chSyst ens. com) or adot-separated numeric
address (e.g. 192. 5. 156. 21).

Port

The port to which the socket is connected on the remote machine. If thisis awell-
known port (as contained inthe/ et ¢/ ser vi ces fileon aUNIX host), then you can
specify its name (e.g. daytime); otherwise, specify a number.

What's New in IDL 5.4 SOCKET

224

Chapter 3: New IDL Routines

Keywords

SOCKET

CONNECT_TIMEOUT

Set this keyword to the number of seconds to wait before giving up and issuing an
error to shorten the connect timeout from the system-supplied default. Most experts
recommend that you not specify an explicit timeout, and instead use your operating
system defaults.

Note
Although you can use CONNECT_TIMEOUT to shorten the timeout, you cannot
increase it past the system-supplied default.

ERROR

A named variable in which to place the error status. If an error occurs in the attempt
to open File, IDL normally takes the error handling action defined by the
ON_ERROR and/or ON_IOERROR procedures. SOCKET aways returns to the
caller without generating an error message when ERROR is present. A nonzero error
status indicates that an error occurred. The error message can then be found in the
system variable 'ERR_STRING.

GET_LUN

Set this keyword to use the GET_LUN procedure to set the value of Unit before the
fileis opened. Instead of using the two statements:

GET_LUN, Unit
OPENR, Unit, 'data.dat'

you can use the single statement:
OPENR, Unit, 'data.dat', /GET LUN
RAWIO

Set this keyword to disable al use of the standard operating system /O for thefile, in
favor of direct callsto the operating system. This allows direct access to devices,
such as tape drives, that are difficult or impossible to use effectively through the
standard I/O. Using this keyword has the following implications:

* Noformatted or associated (ASSOC) 1/0 is allowed on the file. Only READU
and WRITEU are allowed.

* Normally, attempting to read more data than is available from afile causes the
unfilled space to be set to zero and an error to be issued. This does not happen

What's New in IDL 5.4

Chapter 3: New IDL Routines 225

with files opened with RAWIO. When using RAWIO, the programmer must
check the transfer count, either viathe TRANSFER_COUNT keywords to
READU and WRITEU, or the FSTAT function.

e The EOF and POINT_LUN functions cannot be used with afile opened with
RAWIO.

e Eachcal to READU or WRITEU maps directly to UNIX read(2) and write(2)
system calls. The programmer must read the UNIX system documentation for
these calls and documentation on the target device to determine if there are any
special rulesfor /0 to that device. For example, the size of data that can be
transferred to many cartridge tape drivesis often forced to be amultiple of 512
bytes.

READ_TIMEOUT

Set this keyword to the number of seconds to wait for data to arrive before giving up
and issuing an error. By default, IDL blocks indefinitely until the data arrives.
Typically, this option is unnecessary on alocal network, but it is useful with
networks that are slow or unreliable.

SWAP_ENDIAN

Set this keyword to swap byte ordering for multi-byte data when performing binary
I/0 on the specified file. Thisis useful when accessing files also used by another
system with byte ordering different than that of the current host.

SWAP_IF_BIG_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has big endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

SWAP_IF_LITTLE_ENDIAN

Setting this keyword is equivalent to setting SWAP_ENDIAN; it only takes effect if
the current system has little endian byte ordering. This keyword does not refer to the
byte ordering of the input data, but to the computer hardware.

WIDTH

The desired output width. When using the defaults for formatted output, IDL uses the
following rules to determine where to break lines:

» If theoutput fileisaterminal, the terminal width is used. Under VMS, if the
file has fixed-length records or a maximum record length, the record length is
used.

What's New in IDL 5.4 SOCKET

226

Chapter 3: New IDL Routines

» Otherwise, adefault of 80 columnsis used.
The WIDTH keyword allows the user to override this default.
WRITE_TIMEOUT

Set this keyword to the number of seconds to wait to send data before giving up and
issuing an error. By default, IDL blocks indefinitely until it is possible to send the
data. Typically, this option is unnecessary on alocal network, but it is useful with
networks that are slow or unreliable.

UNIX-Only Keywords

STDIO

Under UNIX, forcesthefile to be opened viathe standard C I/O library (stdio) rather
than a